
Stealth Breakpoints

Amit Vasudevan and Ramesh Yerraballi
Department of Computer Science and Engineering

University of Texas at Arlington
{vasudeva,ramesh}@cse.uta.edu

Abstract

Microscopic analysis of malicious code (malware) re-
quires the aid of a variety of powerful tools. Chief among
them is a debugger that enables runtime binary analysis at
an instruction level. One of the important services provided
by a debugger is the ability to stop execution of code at
an arbitrary point during runtime, using breakpoints. Soft-
ware breakpoints support an unlimited number of breakpoint
locations by changing the code being debugged so that it
can be interrupted during runtime. Most, if not all, malware
are very sensitive to code modification with self-modifying
and/or self-checking (SM-SC) capabilities, rendering the use
of software breakpoints limited in their scope. Hardware
breakpoints supported by the underlying processor, on the
other hand, use a subset of the processor register set and ex-
ception mechanisms to provide breakpoints that do not en-
tail code modification. This makes hardware breakpoints the
most powerful breakpoint mechanism for malware analysis.
However, current processors provide a very limited number
of hardware breakpoints (typically 2–4 locations). Thus, a
serious restriction is imposed on the debugger to set a de-
sired number of breakpoints without resorting to the limited
alternative of software breakpoints. Also, with the ever evolv-
ing nature of malware, there are techniques being employed
that prevent the use of hardware breakpoints. This calls for a
new breakpoint mechanism that retains the features of hard-
ware breakpoints while providing an unlimited number of
breakpoints, which cannot be detected or countered.

In this paper, we present the concept of stealth breakpoints
and discuss the design and implementation of VAMPiRE 1, a
realization of this concept. VAMPiRE cannot be detected or
countered and provides unlimited number of breakpoints to
be set on code, data, and I/O with the same precision as that
of hardware breakpoints. It does so by employing a subtle
combination of simple stealth techniques using virtual mem-
ory and hardware single-stepping mechanisms that are avail-
able on all processors, old and new. This technique makes
VAMPiRE portable to any architecture, providing powerful
breakpoint ability similar to hardware breakpoints for mi-
croscopic malware analysis.

1 VAMPiRE is a beast (in folklore) that attacks in a stealth fashion.

1. Introduction

Microscopic malware analysis — a fine-grained analysis
process that provides insight into malware structure and in-
ner functioning — helps in gleaning important information
regarding a malware to facilitate the development of an anti-
dote. Fine-grained analysis requires the aid of various pow-
erful tools, chief among them being a debugger that enables
runtime binary analysis at an instruction level. One of the im-
portant services provided by a debugger is the ability to stop
execution of code being debugged at an arbitrary point dur-
ing runtime. This is achieved using breakpoints, which can
be of two types: Hardware and Software. Hardware break-
points, as the name suggests, are provided by the underly-
ing processor and support precise breakpoints on code, data
and I/O. They are deployed by programming specific pro-
cessor registers to specify the breakpoint locations and type.
Software breakpoints on the other hand are implemented by
changing the code being debugged to trigger certain excep-
tions upon execution (usually a breakpoint exception).

Software breakpoints support unlimited number of break-
point locations but suffer from the fact that they modify the
target code at runtime. This is clearly unsuitable in the con-
text of malware since most if not all malware possess SM-
SC capabilities and are very sensitive to changes made to
their code. For example, viruses such as W32.HIV [18],
W9x.CIH [17], W32.MyDoom [19] etc. use polymor-
phic/metamorphic code envelopes and employ a host of in-
tegrity checks to detect any changes made to their internal
code fragments, to prevent their analysis. Hardware break-
points on the other hand do not involve any form of code
modification and, hence, are the most powerful tool in the
repertoire of any debugger tailored for malware. Current pro-
cessors , however, provide a very limited number of hard-
ware breakpoints (typically 2–4 locations). Thus, a serious
restriction is imposed on a debugger to set desired number
of breakpoints without resorting to the limited alternative of
software breakpoints. Also, with the ever evolving nature of
malware, there are techniques being employed that prevent
the use of hardware breakpoints to analyze them. For exam-
ple, the W32.HIV virus uses the processor debug registers
and the breakpoint exception for its internal computations,
thereby effectively thwarting hardware breakpoints. This sit-
uation calls for a new breakpoint mechanism that retains the
features of hardware breakpoints while providing unlimited

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

number of breakpoints that cannot be detected or countered.
This paper discusses the concept of stealth breakpoints

and presents VAMPiRE, a realization of this concept that of-
fers the best of both worlds in the sense of unlimited num-
ber of precise breakpoints on code, data and I/O which can-
not be detected or countered. This is achieved by employing
simple stealth techniques that involve virtual memory, single-
stepping and task state segments 2 (for processors supporting
legacy I/O) — features found in most new and old proces-
sor architectures.

While various ideas using virtual memory for breakpoint
purposes have been explored in many debuggers [2, 15, 6],
most if not all, allow only data read and/or write breakpoints.
Also none of them are specifically tailored for malware anal-
ysis and their breakpoint implementation can be easily de-
tected and defeated. To the best of our knowledge, VAM-
PiRE is the first to combine virtual memory, single-stepping,
task state segments (TSS) and stealth techniques to provide a
stealth and portable breakpoint framework highly conducive
for malware analysis. By stealth we mean that the break-
points inserted using VAMPiRE is completely invisible to
the code being debugged. VAMPiRE currently runs under the
Windows (9x, NT, 2K and XP) and Linux operating systems
(OS) on IA-32 (and compatible) processors and is portable
on any platform (OS and processor architecture) that sup-
ports virtual memory and single-stepping. The framework
performance is well within the limits to suit interactive de-
bugging and having a simple and easy-to-use API allows it
to be incorporated into existing debuggers with ease.

This paper is organized as follows: In Section 2 we con-
sider related work on breakpoints and compare them with
VAMPiRE. In Section 3 we discuss the design and imple-
mentation of VAMPiRE. In Section 4 we demonstrate the
use of VAMPiRE and present some performance numbers
for the framework. We conclude the paper in Section 5 sum-
marizing our contributions with suggestions for future work.

2. Background and Related Work

Breakpoints — debugging aids that provide the ability to
stop execution of code at an arbitrary point during execu-
tion — are primarily categorized into hardware and software.
There are various designs and implementations of break-
points. Several authors have speculated that efficient data
breakpoints require special purpose hardware [20, 4, 11].
There are also surveys [21] which discuss the architectural
support towards debugging that emphasize the need for spe-
cial purpose hardware as a debugging aid. One such mech-
anism is called ICE breakpoints. ICE or in-circuit emula-
tion is a specialized circuitry embedded within the proces-
sors, designed for debugging the internals of the processor.
There are various approaches to embed the functionality of
in-circuit emulation, in hardware, software and hybrid [5].

2 Task State Segments (TSS) are used to store all the information the pro-
cessor needs in order to manage a task. This includes the processor reg-
isters, stacks, the task’s virtual memory mappings etc.

ICE breakpoints require supporting hardware [8, 1] and is
typically used for processor core debugging than normal pro-
gram debugging. Many processors also have built-in support
for hardware breakpoint facilities. This involves a subset of
the processor register set and exception mechanisms to pro-
vide precise code, data and/or I/O breakpoints albeit allow-
ing breakpoints to be set on a limited number of locations
(typically 2–4 locations).

Software breakpoints on the other hand provide an ele-
gant, cost-effective and scalable solution with the existing
hardware. There are various categories of software break-
points. The first variety relies on program source code avail-
ability. This coupled with help from the compiler is used
to insert data and/or code breakpoints. Practical data break-
points [26, 25] use efficient runtime data structures and
ideas from compiler optimization to provide several meth-
ods of data breakpoints. The method involves checking all
read and/or write instructions using complex data flow anal-
ysis with a segmented bitmap, reserving registers to hold in-
termediate values during address lookup.

The second variety of software breakpoints uses proces-
sor supported trap and/or breakpoint instructions to set the
desired breakpoint. There are a host of implementations as in
GDB [15], KDB [3], Windbg [23], DBX [14], WDB [1],
Softice [6] etc. In this method, a debugger typically encodes
a 1 byte trap instruction at the breakpoint location, while sav-
ing the byte that was replaced. When the breakpoint triggers
by means of the trap exception, the debugger gets control and
the original byte is replaced and the program is restarted to
execute the instruction. While this method solves the prob-
lem of the number of breakpoints that could be active simul-
taneously, it does not support data and/or I/O breakpoints
and is unsuitable for SM-SC code. Also, there are specula-
tions regarding the correctness of trap-based breakpoint im-
plementations. The combination of trap and single-stepping
may result in missed breakpoints in a multithreaded program
if not correctly implemented by the debugger [22].

Fast breakpoints [12] suggested a novel way to imple-
ment software breakpoints using instruction flow change.
The idea is to encode a jump instruction to transfer control to
the debugger at the breakpoint. While the idea is similar to
that of a trap, this method, to some extent, avoids the prob-
lem of correctness of a breakpoint in a multi-threaded pro-
gram. However, the mechanism supports only code break-
points and is not applicable to SM-SC code.

There are software breakpoint mechanisms which employ
the virtual memory system. Vax debug [2], a source level
debugger, implements data read and/or write breakpoints us-
ing page protection techniques. The attribute of the mem-
ory page containing the breakpoint is modified so as to trig-
ger an exception when any location in the page is accessed.
The debugger then performs a few checks to ensure the cor-
rectness of breakpoint triggering and responds accordingly.
However, this idea was not studied or developed further to
study the performance or to support code and/or I/O break-
points. GDB [15], another popular debugger and Poor mans

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

watchpoint [7] also support data breakpoints via a similar
mechanism.

Softice [6] supports breakpoint on instruction execution
using page protection, but has problems regarding the cor-
rectness of the breakpoint. For example, if a code execute
breakpoint is set on a branch instruction using page protec-
tion, the debugger triggers the breakpoint at the destination
address of the branch instruction and not the branch instruc-
tion itself. Also, Softice is a commercial product only de-
veloped for the Windows OS on IA-32 processors, exploit-
ing the OS internals. Thus, its implementation is not generic
and sometimes unstable. As an example, the page protec-
tion breakpoint mechanism of Softice is only supported un-
der Windows 9x and not under Windows NT, 2K or XP.

Another category of software breakpoints is found in de-
buggers based on virtual machines. While complete virtual
machine based interfaces such as Simics [16] and debug-
gers running on them can overcome many problems related
to breakpoints and their stealthness, they are seldom con-
structed in that fashion as they do not specifically target mal-
ware analysis and are not well suited for interactive debug-
ging. The alternative of using debuggers based on compat-
ibility layers such as TTVM [13], has its drawback since
they do not run on commodity OSs and use offline tech-
niques based on logging, replaying and check-pointing [9].
Also, they only maintain a single or a subset of the execu-
tion traces which is unsuitable for SM-SC code.

In comparison, VAMPiRE is a software breakpoint frame-
work — running in real-time on commodity OSs such as
Windows and Linux — employing the virtual memory sys-
tem and page protection techniques similar to the ones used
in existing debuggers such as GDB [15], Softice [6] etc.,
but unique in that: (a) it supports unlimited number of pre-
cise code and I/O breakpoints in addition to data breakpoints
with low latency, (b) it provides breakpoint persistence simi-
lar to hardware breakpoints, (c) it supports SM-SC code and
employs stealth techniques that shield the breakpoints from
detection and/or countermeasures, and (d) it is constructed
to be portable and can be plugged into an existing debug-
ger with ease. These features make VAMPiRE the first, and a
very powerful breakpoint framework specifically tailored to
combat malware that is increasingly becoming hardened to
analysis.

3. Design and Implementation

Our goal in designing and implementing VAMPiRE was
twofold. First, it should be able to provide unlimited break-
points to be set on code, data and I/O with the same precision
as hardware breakpoints. Second, the breakpoints should be
undetectable and impossible to circumvent. This section de-
scribes how VAMPiRE achieves these capabilities. We begin
with an overview of the framework. We follow that by a de-
tailed discussion on how VAMPiRE provides stealth break-
points. Finally, we discuss the framework API.

3.1. Framework Overview

Breakpoints under VAMPiRE are realized through a com-
bination of virtual memory, single-stepping, TSS (for appli-
cable processors) and simple stealth techniques. The basic
idea involves breakpoint triggering by manipulation of mem-
ory page attributes of the underlying virtual memory system
(for code, data or memory-mapped I/O breakpoints) and I/O
port access control bits in the TSS (for legacy I/O break-
points). Note that virtual memory and single-stepping are
common to most if not all processor architectures and, a TSS
(or an equivalent) is typically found on processors support-
ing legacy I/O such as the IA-32 (and compatible) proces-
sors. Figure 1 illustrates the architecture of VAMPiRE in its
current version.

Disassembler
(Processor

Abstraction)

Page Fault
Handler

(PFH)

General Protection
Fault Handler

(GPFH)

Breakpoint
Table

Single Step HandlerO
p

er
at

in
g

 S
ys

te
m

 A
b

st
ra

ct
io

n

Vampire
API

Debugger
Interaction

Debugger
Callbacks

Breakpoint
Triggering

Resume
Execution

Figure 1. VAMPiRE Architecture

The core of the framework is composed of a page-fault
handler (PFH), a general protection fault handler (GPFH), a
single-step handler and a framework API. The PFH provides
breakpoints to be set on code, data and memory-mapped I/O
while the GPFH provides legacy I/O breakpoint support. A
debugger employing VAMPiRE interacts with the framework
through its API to set and/or remove breakpoints at desired
locations. Every breakpoint has an associated callback (pro-
vided by the debugger), a function to which control is trans-
ferred upon breakpoint triggering.

When a breakpoint triggers, the framework fault handlers
(PFH or GPFH) receive control, determine the type of break-
point (by employing a disassembler) and invoke the callback
to do the processing and resume execution. The single-step
handler is employed by the framework for breakpoint per-
sistence, a feature that allows a breakpoint to re-trigger au-
tomatically in the future. A breakpoint under VAMPiRE can
be persistent (re-triggerable) or non-persistent (one-shot) and
can be active or inactive at any instant. VAMPiRE uses a
breakpoint-table — a memory structure specific to the frame-
work — to maintain a list of breakpoints set using the frame-
work. The information stored in the breakpoint-table is used
to identify a breakpoint (and its callback) during breakpoint
triggering and processing.

3.2. Breakpoint Triggering for Code, Data and
Memory-Mapped I/O

VAMPiRE uses the virtual memory system of the un-
derlying platform to provide breakpoints on code, data and

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

memory-mapped I/O. Support for virtual memory on most
processors, is in the form of page directories and page ta-
bles. The memory addressing space is divided into chunks
of equal size elements called a page. (typically 4K or 8K
bytes in size). Pages can have various attributes such as
read, read/write, present, not-present, user,
supervisor etc. These attributes along with a page-fault
exception is used to provide virtual memory support and
memory protection.

A page-fault exception is generated by the underlying pro-
cessor when a reference to a page is inconsistent with the
page attributes (e.g. a write is issued to a location in the ref-
erenced page, while the page attribute is readonly). The
OS normally installs a handler for the page-fault exception,
which implements a paging algorithm, provides protection
and other features such as copy-on-write etc. VAMPiRE in-
stalls its PFH (pseudo-code shown in Figure 2), replacing and
chaining to the existing handler to implement breakpoints on
code, data and memory-mapped I/O.

 1. obtain linear-address of fault
 2. find memory page corresponding to linear-address
 3. if (no active breakpoints on memory page){
 4. apply clock patch
 5. chain to previous page-fault handler
 6. }

 7. mark memory page present preventing recursive faults
 8. find effective address of instruction causing the fault
 9. if (effective address is a breakpoint address){
10. get breakpoint type (read, write and/or execute)
11. trigger breakpoint and process
12. }

13. setup re-triggering for persistent breakpoints on
 memory page
14. setup single-step handler for breakpoint persistence
15. apply clock patch
16. return

Figure 2. VAMPiRE PFH

To set a breakpoint (code, data or memory-mapped I/O)
at the desired memory location, VAMPiRE sets the at-
tribute of the page corresponding to the memory location
to not-present. This results in a page-fault exception
when any location is referenced in that page. When VAM-
PiRE’s PFH gets control it obtains the linear-address of the
fault (this is passed to the handler by the processor) and de-
termines the page corresponding to the linear-address. The
PFH then performs a check to determine if the page corre-
sponding to the linear-address contains any active break-
points. If not, the PFH applies a clock patch (if applica-
ble) to hide its processing latency from the malware (see
Section 3.6) and chains to the original page-fault han-
dler since the fault is not due to the framework. This is
shown in lines 1–6, Figure 2.

If the page corresponding to the linear-address of the fault,
contains active breakpoints, the PFH sets the page attribute
to present to prevent recursive page-faults within the han-
dler. A disassembler is then employed to obtain the effective
address of the instruction causing the fault. If the effective
address is a breakpoint address, the disassembled instruction
is analysed to see if it is a read, write or execute breakpoint

for code, data and memory-mapped I/O. If so, the breakpoint
is triggered and processed. This is shown in lines 7–12, Fig-
ure 2.

The PFH then prepares to re-trigger any persistent break-
points on the page corresponding to the linear-address caus-
ing the fault. This is accomplished by populating a global
breakpoint re-trigger array (see Section 3.5). A single-step
handler is then setup to step over the current instruction that
caused the breakpoint to enable breakpoint persistence (see
Section 3.4). At this point, the PFH applies a clock patch (if
applicable) to hide the latency of the handler from the mal-
ware (see Section 3.6). Finally, the PFH returns, marking the
end of exception. This is shown in lines 13–16, Figure 2.

3.3. Breakpoint Triggering for Legacy I/O

Legacy I/O uses processor supported I/O instructions to
read from or write to a I/O port. Legacy I/O breakpoints in-
volve breakpoint triggering due to such I/O instructions at-
tempting to read from or a write to a specific I/O port. Pro-
cessors which support legacy I/O along with virtual memory,
support legacy I/O protection or virtualization in the form
of a TSS (or an equivalent). VAMPiRE relies on the TSS to
provide breakpoints on legacy I/O on processors that support
them. The TSS consists of a bitmap structure called the I/O
Bitmap which is a bit array with 1 bit for every legacy I/O
port in the system. If the bit corresponding to a I/O port is set
to a 1, the processor causes a general protection fault (GPF)
when I/O instructions referencing that I/O port are executed.
VAMPiRE makes use of this feature to support legacy I/O
breakpoints. It installs its GPFH (pseudo-code shown in Fig-
ure 3), replacing and chaining to the existing handler to im-
plement breakpoints on legacy I/O.

 1. obtain linear-address of the fault via TSS
 2. disassemble the instruction causing the fault
 3. if (not legacy I/O instruction){
 4. apply clock patch
 5. chain to previous GPF handler
 6. }

 7. determine I/O port in disassembled instruction
 8. if (I/O breakpoint on I/O port){
 9. reset I/O bitmask for the port
10. find breakpoint type (read or write)
11. trigger breakpoint and process
12. }

13. setup re-triggering for persistent breakpoints on
 memory page
14. setup single-step handler for breakpoint persistence
15. apply clock patch
16. return

Figure 3. VAMPiRE GPFH

VAMPiRE’s GPFH semantics is very similar to that of its
PFH. To set a breakpoint at the desired I/O location (read or
write), VAMPIRE sets the bit corresponding to the I/O port,
in the I/O Bitmap array to a 1. This results in a GPF when
any access is attempted using that particular I/O port. When
VAMPiRE’s GPFH gets control, the handler obtains the lin-
ear address of the fault via the TSS and disassembles the in-
struction causing the fault. If the instruction does not belong
to the category of legacy I/O instructions, the GPFH applies

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

a clock patch (if applicable) to hide its processing latency
from the malware (see Section 3.6) and chains to the origi-
nal GPF handler since the fault is not due to the framework.
This is shown in lines 1–6, Figure 3.

If the instruction causing the fault is identified as a legacy
I/O instruction, the GPFH checks to see if the correspond-
ing I/O port (extracted from the instruction) has a breakpoint
set on it. If so, the corresponding I/O permission bit in the
I/O Bitmap is set to a 0 to prevent recursive faults from ac-
cessing that port within the handler. The GPFH then obtains
the breakpoint type (read or write) and processes the break-
point. This is shown in lines 7–12, Figure 3. The rest of the
GPFH processing (lines 13–16, Figure 3) is the same as de-
scribed for the framework PFH (lines 13–16, Figure 2, Sec-
tion 3.2) for the framework PFH.

3.4. Breakpoint Persistence via Single-Stepping

The single-step exception is a standard exception on all
processor architectures that is triggered upon execution of
each instruction when a certain processor flag (also called the
trap flag) is activated. VAMPiRE installs its own single-step
handler (pseudo-code shown in Figure 4), replacing the exist-
ing handler to implement breakpoint persistence. The single-
step handler is installed on demand from the framework fault
handlers (PFH and GPFH).

When the single-step handler is invoked due to a sin-
glestep exception , the handler first makes sure that any effect
of the trap flag (indicator for single-step) is masked out of
the instruction that has just been stepped over. This is a very
important step towards hiding the framework from the mal-
ware being analysed (see Section 3.6). The single-step han-
dler then iterates through every element in the breakpoint re-
trigger array (see Section 3.5) and sets the appropriate bit in
the I/O Bitmap to 1 (in case of legacy I/O breakpoint) or sets
the appropriate memory page attribute to not-present (in
case of code, data or memory-mapped I/O breakpoint). This
ensures that future accesses to the page or the legacy I/O port
re-triggers the breakpoint, thereby achieving breakpoint per-
sistence. Finally, the handler resets the trap flag, uninstalls it-
self, and issues an end of exception. This is shown in lines
1–9, Figure 4.

3.5. Breakpoint Table, Callbacks, Re-trigger Array

VAMPiRE makes use of certain important storage el-
ements for its functioning. Chief among them is the
breakpoint-table, which is an array of structures, one ele-
ment for each breakpoint that is set using the framework.
The breakpoint-table (shown in Figure 5) consists of (1) the
breakpoint address (2) the breakpoint type (code, data, mem-
ory mapped I/O or legacy I/O), (3) the breakpoint at-
tributes which include read, write, execute and the persis-
tence flags, (4) the address of the callback which gets control
when the breakpoint is triggered, and (5) the breakpoint sta-
tus, which indicates if the breakpoint is currently active or
inactive.

 1. mask out effect of the trap flag

 2. for(each entry in breakpoint re-trigger array){
 3. if (breakpoint type is legacy I/O)
 4. set corresponding bit in I/O bitmap to 1
 5. else
 6. set target memory page attribute to not-present
 7. }

 8. restore trap flag and uninstall handler
 9. return

Figure 4. VAMPiRE Single-Step Handler

A callback is simply a function that is supplied with pa-
rameters identifying the breakpoint address, the breakpoint
type (code, data, memory mapped or legacy i/o), the break-
point condition (read, write or execute) and the breakpoint
attribute (persistent or non-persistent). A debugger using
VAMPiRE will have to provide such a function that gets con-
trol when a breakpoint is triggered to do the appropriate pro-
cessing. The breakpoint address is the address in memory,
which would trigger a breakpoint when accessed. The break-
point address is the I/O port number if the breakpoint is of
type legacy I/O. The breakpoint address and its attributes are
usually set by the debugger using the appropriate VAMPiRE
API. Though a breakpoint can be set as persistent or non-
persistent during its creation, a callback can subsequently
over-ride this at runtime by returning an appropriate inte-
ger value in the breakpoint attribute parameter, to determine
if the breakpoint is to remain persistent or a one shot. One
could use different callbacks for different breakpoints, or use
a single callback to handle all the breakpoints set using the
framework.

Breakpoint Address Type Attributes Callback Address Status

00501020h

10005000h

50h

50001200h

Data

Code

Legacy I/O

Code

R

R W X P

R

X

812E5000h

812E5000h

812E5000h

812E5000h







R = Read W = Write X = Execute P = Persistent  = Active  = Inactive

Figure 5. VAMPiRE Breakpoint Table

Figure 5 shows several examples of entries one may find
in the breakpoint table. The first entry shows a breakpoint
set on memory read for the address 00501020h. The break-
point will only be triggered once since the persistent attribute
is missing. Similarly, the second entry shows a breakpoint
being set on memory read, write, and/or execute at location
10005000h with the breakpoint being re-triggered automati-
cally because of the presence of the persistent attribute. The
third entry shows a legacy I/O breakpoint being set for a read
on port 50h that is currently inactive. Also from Figure 5
one can see that all breakpoints are routed through one sin-
gle callback function at address 812E5000h.

VAMPiRE uses an array, called the breakpoint re-trigger
array in its fault handlers. Each entry in the breakpoint re-
trigger array is a structure containing the breakpoint type,
the target page of the breakpoint address (for code, data and

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

memory-mapped I/O) or the target I/O port number (in case
of legacy I/O), and its associated callback address. This ar-
ray is used by the single-step handler (see Section 3.4) to en-
able breakpoint persistence.

3.6. Stealth Techniques

VAMPiRE uses the fault handlers (PFH and GPFH) at its
core for implementing breakpoints. However, the fault han-
dlers, their latency and issues involving single-stepping can
be detected during runtime albeit using some subtle tricks.
We now present some simple techniques that the framework
employs for stealthness.

The framework PFH (see Section 3.2) the GPFH (see Sec-
tion 3.3) apply a clock patch during their processing. On the
IA-32 (and compatible) processors, the processor maintains
a time-stamp counter which is representative of the actual
amount of clock cycles that have elapsed since system boot-
up. The RDTSC instruction can be used to obtain the cur-
rent processor time-stamp counter reading. A malware could
use this to detect if its code is being run under any debugger
since single-stepping or breakpoints will result in increased
latency which is not present during normal execution. De-
pending on the system VAMPiRE is run under, the frame-
work applies a clock patch resetting the time-stamp counter
to a value that mimics the latency close to that of a normal
handler. The framework also performs the same reset on the
real-time clock since a malware could use the real-time clock
to perform a similar latency detection.

VAMPiRE employs a single-step handler for breakpoint
persistence. The single-step handler makes use of the proces-
sor trap-flag for its functioning (see Section 3.4). The pro-
cessor usually has instructions which aid in its manipula-
tion. A malware could, for example, on the IA-32 (and com-
patible) processors use instructions like PUSHF and POP to
check for the trap-flag being active which signifies that its
being debugged. In some cases a malware could also em-
ploy the single-step exception to perform its functionality.
VAMPiRE resolves such issues by masking out the effect
of the trap-flag. The framework maintains a per-thread vir-
tual trap-flag status and can simulate a single-step exception
by chaining to the original handler in cases where the tar-
get malware uses single-stepping. The framework PFH and
GPFH install the single-step handler on demand, ensuring
that VAMPiRE’s single-step handler is always always the
first to get control even if a malware installs its own single-
step handler in kernel-mode. Note that a malware can install
its own PFH and GPFH too, but will have to chain to the de-
fault handlers (in this case, VAMPiRE’s) since these handlers
form the backbone of the host OS.

Another detection scheme against VAMPiRE could em-
ploy checking the interrupt vector address range of the PFH
and the GPFH (which fall within a constant range for certain
OSs regardless of their version), by comparing them with the
system default values. Note that a detection scheme cannot
check the vector address of the single-step handler since it is
installed on demand (see Section 3.4). VAMPiRE uses a re-

targetable code instrumentation technique [24], to install the
exception handlers behind the default handlers. Thus, even
though the vector addresses for the various exception han-
dlers will still point towards the system default values, the
actual code at these addresses will be modified to execute the
frameworks exception handlers. The basic idea behind the in-
strumentation technique is to alter the target code, in binary,
at runtime, in a way so as to execute a replacement code. The
replacement code can in turn execute the original target code,
if required, in its unaltered form. VAMPiRE employs a ran-
dom version of the instrumentation technique within the sys-
tem default handlers such that a malware cannot search for
a specific instruction in the code stream of the default han-
dlers to detect the framework (an example would be to de-
tect a branch instruction right at the start of the system han-
dler code or at a specific offset). A debugger using VAM-
PiRE would ideally load a resident part of itself and initial-
ize the framework right at the boot-stage of the OS, before
any device drivers are loaded.

The framework also employs a polymorphic/metamorphic
engine to ensure that every instance of its deployment is dif-
ferent in the form of any privileged modules, environment
variables, configuration files and code streams. Thus, no mal-
ware can detect VAMPiRE by searching these elements for a
pattern.

A point to be noted is, though VAMPiRE is completely
stealth, a debugger incorporating VAMPiRE might not be.
For example, if one were to plug VAMPiRE into a debugger
such as Windbg [23] or Softice [6], a malware might still be
able to detect that it is being analysed. However, this detec-
tion is that of the Windbg or Softice and not of VAMPiRE.
The authors are currently developing a full fledged stealth
debugger codenamed WiLDCAT, which makes use of VAM-
PiRE to provide features such as selective malware code
stream tracing, real-time reverse debugging, memory mon-
itoring and a host of other features in both user- and kernel-
mode, making it an indispensable tool for microscopic mal-
ware analysis.

3.7. Framework API and Source Organization

The main interface to VAMPiRE is provided in the form
of three easy to use API functions: vampire init,
vampire bpsetup and vampire bpremove.
vampire init is responsible for installing the frame-
work page-fault and the GPF handlers and is invoked only
once to initialize the framework. vampire bpsetup
is used for setting up a breakpoint at the desired mem-
ory or I/O location with a corresponding callback.
vampire bpremove is used to remove or deactivate a pre-
viously set breakpoint. The API’s vampire bpsetup
and vampire bpremove rely on the breakpoint ta-
ble (see Section 3.5), to maintain the current list of break-
points.

VAMPiRE depends on the host OS to install exception
handlers for the page-fault, GPF and the single-step excep-
tions. This dependency is isolated in the framework source

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

code, through an OS backend that masks the OS dependent
aspects so that it is easy to port VAMPiRE to other OSs with
ease. Similarly, the disassembler used by the PFH and the
GPFH forms the processor backend that masks the architec-
ture dependent aspects of the framework. Thus, it becomes
easy to port VAMPiRE to other architectures as well.

4. Experience and Performance Evaluation

This section will discuss our experience with VAM-
PiRE and also present the framework’s performance mea-
surements. The performance of a breakpoint framework such
as VAMPiRE depends on a number of factors, chief among
them being the nature of the code being debugged, the de-
pendency of the code on the data accessed, and the style
of debugging employed by an individual in terms of set-
ting breakpoints. These factors are not easy to characterize
and hence it is difficult to come up with a representa-
tive debugging session for performance measurements. This
is further complicated by the fact that the same individ-
ual can adopt a different style of debugging at any given time
for a given code fragment. Therefore, we will concentrate on
presenting the performance of VAMPiRE based on debug-
ging sessions with a Windows based virus, W32.HIV [18].
The performance of the framework for other debugging ses-
sions can be estimated in a similar fashion. We chose the
W32.HIV virus for our analysis and discussion since it con-
tains a variety of anti-analysis tricks that one would typically
encounter in a malware.

Before we proceed to discuss our experience with the
W32.HIV virus, a few words regarding the test-bench are in
order. To validate VAMPiRE, we have implemented a proto-
type debugger. The current version of our debugger runs un-
der the Windows OS (9x and XP) on the IA-32 (and compati-
ble) processors. It makes use of VAMPiRE and also has sup-
port for traditional hardware and software breakpoints. For
test purposes, an AMD Athlon XP 1.8 GHz processor with
512 MB of memory was used. Readings were taken at var-
ious points within our debugger after a breakpoint was set
and before the triggering of a breakpoint and its processing.
We used processor clock cycles as the performance metric
for comparison. This metric is chosen, as it does not vary
across processor speeds and also since it is a standard in lit-
erature related to micro benchmarks. The RDTSC instruction
was used to measure the clock cycles.

The W32.HIV is a dangerous per-process memory resi-
dent Win32 subsystem virus that infects Windows executa-
bles and MSI (install) archives and corrupts certain impor-
tant system files. The virus has a unique technique of upgrad-
ing itself from the internet and also possesses e-mail spread-
ing abilities. Besides employing a stock encryption and poly-
morphic /metamorphic engine, the virus uses anti-debugging
tricks to prevent itself from being analysed. It also has mech-
anisms of halting the machine completely if a debugger (e.g.
Softice, Windbg etc.) is detected in use.

The W32.HIV virus and modified strains cannot be anal-
ysed using traditional software breakpoints as we describe in

the following paragraphs. Even hardware breakpoints fail to
help in the complete analysis of the virus. The first part of this
section will present the analysis of the virus and the perfor-
mance measurements of VAMPiRE when compared to hard-
ware breakpoints. This analysis is for code fragments of the
virus where both VAMPiRE and hardware breakpoints can
be used. The second part of this section will then present an
analysis of the virus and the performance measurements of
VAMPiRE for code fragments where hardware breakpoints
cannot be used thereby showing the utility of the framework.

For purposes of discussion, we will proceed to look at
some simplified code fragments of the W32.HIV under dif-
ferent debugging sessions with our prototype debugger. The
code fragments are shown in the 32-bit assembly language
syntax of the IA-32 (and compatible) processors. We have
removed details from the code fragments that are not perti-
nent to our discussion. Consider a code fragment as shown in
Figure 6. This code fragment might not look interesting at a
first glance. However, after quite a bit of tinkering, it is found
that this, and other similar code fragments are in fact exam-
ples of the virus polymorphic/metamorphic engine kicking
into action. More specifically, during our first encounter with
debugging and tracing this code fragment, we had our suspi-
cions on the section of the code fragment with the compare
(CMP) instructions (lines 13–16, Figure 6), to have some-
thing to do with the main branch logic handling the function-
ality of the virus.

 ...
 1. xor eax, esi
 2. and eax, 38567fffh
 3. add eax, ecx
 4. cmp eax, edi
 5. jbe 10015000
 6. mov edi, eax
 7. mov ecx, [esi+3ch]
 8. xor ecx, [esi+30h]
 9. mov [esi+3ch], ecx
10. mov esi, [esi+40h]
11. rep movsb
12. mov eax, edi
13. cmp eax, 5
14. je 1001F0F0
15. cmp eax, 10
16. je 1001F1F0
17. cmp eax, 4F
18. je 1001F4F0
 ...

...
 1. xor eax, esi
 2. and eax, 38567fffh
 3. add eax, ecx
 4. cmp eax, edi
 5. jbe 10015000
 6. mov edi, eax
 7. mov ecx, [esi+3ch]
 8. xor ecx, [esi+30h]
 9. mov [esi+3ch], ecx
10. mov esi, [esi+40h]
11. rep movsb
12. mov eax, edi
13. cmp eax, 5
14. je 1001F0F0
15. cmp eax, 10
16. je 1001F1F0
17. cmp eax, 4F
18. je 1001F4F0

Breakpoint

Figure 6. Self-Modifying Code Fragment

However, when we set a traditional software breakpoint
on the second CMP instruction (line 13, Figure 6) and let the
code fragment execute, the breakpoint is not triggered. Trac-
ing back a few instructions manually, we find the problem
to be the section of the code fragment (lines 6–11, Figure
6), that generates new code (at runtime) overwriting existing
code starting from the second CMP instruction (line 13, Fig-
ure 6). This explains why the traditional software breakpoint
was not triggered, as it was overwritten by the newly gener-
ated code. A manual workaround to this problem is achieved
by tracing through the REP MOVSB instruction (line 11, Fig-
ure 6) one step at a time and inserting a traditional software
breakpoint after the new code is generated. However, since
a majority of the virus code is littered with such code frag-

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

ments, this process soon becomes a tedious task.
Now, consider the code fragment as shown in Figure 7,

which will be used to demonstrate the self-checking nature
of the virus. The W32.HIV has self-checking abilities. This
means that the virus has the capability to detect any kind
of modification done to its code and will act in a way that
will confuse the individual debugging the virus. The code
fragment shown in Figure 7 is very well constructed to mis-
lead someone who is trying to study the behaviour of the
virus. Though, at a first glance it is very similar to the self-
modifying code fragment as shown in Figure 6, it is just a
plain sequence of instructions. In any case, when we set a
traditional software breakpoint on the second CMP instruc-
tion (line 19, Figure 7) — to study the branching in detail
— and let the code execute, the breakpoint triggers success-
fully. Everything appears normal, and there is no sign of any
code changes etc. However, when we trace further, we ar-
rive at a section of code that is garbage and leads to spuri-
ous faults. The problem is traced back to the section of the
code fragment as shown in lines 11–18, Figure 7.

 ...
 1. xor eax, esi
 2. and eax, 38567fffh
 3. add eax, ecx
 4. cmp eax, edi
 5. jbe 100F5000
 6. mov edi, eax
 7. mov ecx, [esi+3ch]
 8. xor ecx, [esi+30h]
 9. mov [esi+3ch], ecx
10. mov esi, [esi+40h]
11. xor eax, eax
12. mov dl, [edi]
13. or dl, [esi]
14. movzx edx, dl
15. add eax, edx
16. inc edi
17. inc esi
18. loop 12
19. cmp eax, 5
20. je 100FF0F0
21. cmp eax, 10
22. je 100FF1F0
 ...

Breakpoint

Figure 7. Self-Checking Code Fragment

Here we see an integrity check being attempted on the
code starting from the CMP instruction on line 19, Figure 7.
Setting a traditional software breakpoint on this CMP instruc-
tion causes the instruction to be overwritten with a break-
point instruction. However, this behaviour of traditional soft-
ware breakpoints causes the code fragment to compute a
wrong checksum during the integrity check (lines 11–18,
Figure 7). Further, the virus is very intelligent in that, it does
not terminate or branch to any location upon a failed integrity
check. Instead, the checksum is the branch variable (stored in
register EAX) itself. In other words, the virus uses the check-
sum as a representative of the target address of a branch that
performs some processing pertaining to the functionality of
the virus. Thus, on an incorrect checksum, it branches to a lo-
cation where the code is nothing but garbage and on a valid
checksum the code fragment performs the function it was de-
signed for.

The manual workaround in this case is achieved by pre-
computing the checksum and adjusting the value in the EAX

register and tracing on. But, as with the self-modifying code
fragments, there are many such self-checking code frag-
ments. To further complicate matters, the self-checking code
fragments are generated at runtime with predefined values
for the branch variable (EAX) for each fragment. This prede-
fined value is the value for which the fragment will perform
the desired function. If, for a given self-checking code frag-
ment, the branch variable (EAX) contains a different value,
the functionality is undefined. This makes the process of pre-
computing and manually adjusting the value of the EAX reg-
ister a tedious process.

As seen, traditional software breakpoints fail to help in
analysing the virus because of its self-modifying and self-
checking abilities. However, we can use VAMPiRE and hard-
ware breakpoints to set breakpoints on code fragments such
as the ones shown in figures 6 and 7. The performance mea-
surements comparing hardware breakpoints and VAMPiRE
are shown in Figure 8, for various such code fragments un-
der our prototype debugger. With VAMPiRE, for purposes of
measurement, code being debugged and breakpoints fall un-
der two categories. The first is when the code being debugged
and the breakpoints are on separate memory pages. The sec-
ond is when the code and the breakpoints are on the same
page. The latency due to our framework for both cases with
various self-modifying and self-checking virus code frag-
ments is shown in Figure 8. The x-axis is the amount of clock
cycles that have elapsed between executing the code with the
breakpoint set and breakpoint triggering. The y-axis (cate-
gory axis) represents the code fragments which were chosen
arbitrarily from our debugging sessions with the W32.HIV.
Also, a part of the graph is magnified (indicated by dotted
lines) to provide a clear representation of categories with low
values on the x-axis.

100 50 02000 1000 0 50 100 150 200 250 300

Latency in Clock Cycles (x 103)

Fragment - 1

Fragment - 2

Fragment - 3

Fragment - 4

Code and Breakpoints on
Separate Memory Pages

Code and Breakpoints on
the Same Memory Page

Hardware BreakpointsVAMPiRE

82.76

165.10

24.74 297.95

47.42

103.24

61.74

130.45

15.71

221.11

32.581820.58

92.61

610.08

20.51

210.02

Figure 8. Performance of VAMPiRE vs Hard-
ware Breakpoints

From the graph we can see that the performance of VAM-
PiRE is comparable to hardware breakpoints in the case
where code and breakpoints exist on different memory pages.
However, in some cases (as exemplified by Fragment-2, Fig-
ure 8, for code and breakpoints on different memory pages)
when the data and/or code reference to a page is much higher,

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

we find that the latency of VAMPiRE is much more than
that of hardware breakpoints. When we look at code and
breakpoints existing on the same memory page, the latency
of VAMPiRE is inherently higher due to its design and the
single-step mechanism coming into effect (see Section 3.4).
Thus we can conclude that the performance of the frame-
work is highly dependent on the nature of code being de-
bugged and the nature of the breakpoints set by an individ-
ual. However, the measurements give a gross indication of
the latency one might expect. As seen from Figure 8, the la-
tency of the framework is found to be well within the limits
to suit interactive debugging.

While it is possible to set hardware breakpoints on the
code fragments discussed so far, we soon find that the virus
has efficient anti-debugging capabilities that prevent the use
of hardware breakpoints too. Before we discuss these ca-
pabilities a few words on hardware breakpoints are in or-
der. The hardware breakpoint mechanism on the IA-32 (and
compatible) processors makes use of a set of debug regis-
ters named DR0–DR7 and an exception handler for break-
point and single-step. Registers DR0–DR3 are 32-bit regis-
ters which contain the linear address in memory where a
code, data or a I/O breakpoint should occur, providing 4
breakpoints in total to be active at a time. DR7 is a control
register which is used to setup the breakpoints initially. When
a breakpoint is triggered, the exception handler is invoked
with certain status flags in the DR6 (status) register which de-
scribes the type of breakpoint and its attributes (code /data /
I/O, read/write/execute).

Let us look at Figure 9 which shows a code frag-
ment from the virus in the context of hardware break-
points from a debugging session under the Windows 9x
OS. The W32.HIV spawns (and eventually kills) sev-
eral ring-0 (privileged) threads in the system at arbitrary
intervals. The code used to spawn these threads are con-
cealed within the virus polymorphic/metamorphic lay-
ers. The threads are different each time they are spawned,
but have a common functionality as shown by the code frag-
ment in Figure 9.

 ...
 1. sub esp, 8
 2. sidt [esp]
 3. mov eax, [esp]
 4. mov edx, [esp+2]
 5. mov eax, [edx+8]
 6. cmp eax, [esi+2bh]
 7. jb 11
 8. cmp eax, [esi+2dh]
 9. ja 11
10. jmp 12
11. jmp CA50D000h
12. mov dr0, edi
13. mov eax, esi
14. ror eax, 16
15. mov dr1, eax
16. mov ebx, dr2
 ...

...
 1. xor eax, esi
 2. and eax, 38567fffh
 3. add eax, ecx
 4. cmp eax, edi
 5. jbe 10015000
 6. mov edi, eax
 7. mov ecx, [esi+3ch]
 8. xor ecx, [esi+30h]
 9. mov [esi+3ch], ecx
10. mov esi, [esi+40h]
11. rep movsb
12. mov eax, edi
13. cmp eax, 5
14. je 1001F0F0
15. cmp eax, 10
16. je 1001F1F0
17. cmp eax, 4F
18. je 1001F4F0

BADBEHAVE

Figure 9. Anti-Debugging Code Fragment

The threads first check to see if the default single-step
handler has been altered by checking the system interrupt
descriptor table (IDT). It makes use of the SIDT instruc-

tion to grab hold of the single-step handler address. It then
checks if the handler is pointing to something different from
the expected system default range (which for Windows 9x
is C0000000h–C000FFFFh). If the handler address is out of
range, the thread knows that there is a debugger installed,
and behaves in a very unfriendly manner (using the JMP in-
struction) to throw the system into an unstable state as long
as the debugger is active. This is shown in lines 1–11, Fig-
ure 9 (the actual behaviour is concealed behind the JMP in-
struction and is not shown here).

The second level of anti-debugging within the threads
employ the debug registers themselves for computation and
functioning as shown in lines 12–19, Figure 9. The only
workaround to this second level, when using hardware break-
points, is to manually compute the values in registers and
trace them one at a time, while changing the instructions to
hold registers other than debug registers. However, this is
more than a mission, as (1) there are multiple threads one
needs to change that are spawned and killed at regular inter-
vals and (2) the threads themselves have self-checking code
fragments, which means one has to set the instructions back
to what they were before proceeding to trace further.

However, since VAMPiRE does not make use of any hard-
ware specific debugging registers, it is possible to set break-
points and trace through such code fragments. Figure 10
shows the performance measurements that were obtained
using VAMPiRE alone for such code fragments, using our
prototype debugger. The x-axis is the amount of clock cy-
cles that have elapsed between executing the code with the
breakpoint set and breakpoint triggering. The y-axis (cate-
gory axis) represents the code fragments which were once
again chosen arbitrarily from our debugging sessions with
the W32.HIV. A point to be noted is that the graph is not
a comparison (since hardware breakpoints cannot be used to
analyse such code fragments) but is only provided for the
sake of completeness of performance evaluation.

0 5 10 15 20 25 30

Latency in Clock Cycles (x 103)

Fragment - 5

Fragment - 6

Fragment - 7

Fragment - 8

Code and Breakpoints on
Separate Memory Pages

Code and Breakpoints on
the Same Memory Page

VAMPiRE

300 250 200 150 100 50 0

61.28

261.02

26.29

105.78

5.13

3.11

26.21

18.21

Figure 10. Performance of VAMPiRE

As seen, the features provided by standard debuggers
in using hardware and software breakpoints do not suffice
to study code employing self-modification, self-checking
and/or any form of anti-debugging as in the case of the
W32.HIV and other similar viruses and malicious programs.
With VAMPiRE however, this task is greatly simplified. The
framework allows unlimited number of breakpoints to be set

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

on code, data, and I/O with the same precision as that of hard-
ware breakpoints. The breakpoints set by VAMPiRE cannot
be detected or countered and the latency of the framework
is well suited for interactive debugging as seen from its per-
formance measurements. These features make VAMPiRE the
first and a very powerful breakpoint framework specifically
tailored for malware analysis.

5. Conclusions

This paper presented VAMPiRE, a breakpoint framework
that overcomes the limitations of hardware and software
breakpoints in the context of malware. VAMPiRE cannot
be detected or countered and provides unlimited number of
breakpoints to be set on code, data, and I/O with the same
precision as that of hardware breakpoints. This makes VAM-
PiRE higly conducive for microscopic analysis of current
generation malware, that are increasingly becoming hard-
ened to analysis. We discussed our experience using VAM-
PiRE to analyze a real world malware, demonstrating the
utility of the framework. We also showed that the perfor-
mance of the framework is well suited for interactive de-
bugging. VAMPiRE can be plugged into any debugger with
ease and supports various platforms with its retargetable de-
sign. The framework currently runs under the Windows and
Linux OSs on the IA-32 (and compatible) processors. VAM-
PiRE forms the backbone of our malware analysis environ-
ment currently under development, and this will provide a
completely stealth analysis environment to analyze and com-
bat malware. VAMPiRE is currently known to have only one
drawback in that of not supporting legacy I/O breakpoints in
kernel-mode. We are working towards a solution to support
this feature in the near future.

References

[1] American Arium. Itanium ITP: Intel itanium ICE kit.
[2] B. Beander. Vax debug: An interactive, symbolic, multilingual

debugger. In Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on High-Level Debugging,
1983.

[3] P. A. Buhr, M. Karsten, and J. Shih. Kdb: A multithreadedde-
bugger for multithreaded applications. In Proceedings of the
SIGMETRICS symposium on Parallel and Distributed Tools,
January 1996.

[4] T. Cargill and B. Locanthi. Cheap hardware support for soft-
ware debugging and profiling. In Proceedings of the Second
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October 1987.

[5] H. Chen, C. Kao, and I. Huang. Analysis of hardware and soft-
ware approaches to embedded in-circuit emulation of micro-
processors. In Proceedings of the 7th Asia Pacific Conference
on Computer Systems Architecture. Australian Computer Sci-
ence Communications, January 2002.

[6] Compuware Corporation. Debugging blue screens. Technical
Paper, September 1999.

[7] M. Copperman and J. Thomas. Poor man’s watchpoints. ACM
SIGPLAN Notices, January 1995.

[8] Corelis. EMDT/K5 boundary-scan (JTAG) emulator for the
AMD K5 processors.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
Revirt: Enabling intrusion analysis through virtual-machine
logging and replay. In Proceedings of the 2002 Symposium on
Operating Systems Design and Implementation (OSDI), De-
cember 2002.

[10] Hewlette Packard. The WDB debugger. HP Technical Soft-
ware.

[11] M. S. Johnson. Some requirements for architectural support of
software debugging. In Symposium on Architectural Support
for Programming Languages and Operating Systems, April
1982.

[12] P. Kessler. Fast breakpoints: design and implementation. In
Proceedings of the conference on Programming Language de-
sign and implementation, June 1990.

[13] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging op-
erating systems with time-traveling virtual machines. In Pro-
ceedings of the Usenix Annual Technical Conference - Gen-
eral Track, April 2005.

[14] M. A. Linton. The evolution of dbx. In Proceedings of the
Usenix Summer Conference, June 1990.

[15] M. Loukides and A. Oram. Getting to know gdb. Linux Jour-
nal, 1996.

[16] P. S. Magnusson, M. Christensson, J. Eskilson, G. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform. IEEE
Computer Society, 2(35):50–58, February 2002.

[17] McAfee Inc. The W9x.CIH virus. Virus Information Library,
July 1998.

[18] McAfee Inc. The W32.HIV virus. Virus Information Library,
October 2000.

[19] McAfee Inc. The W32.MyDoom virus. Virus Information Li-
brary, February 2004.

[20] J. M. Mellor-Crummey and T. J. LeBlanc. A software instruc-
tion counter. In Proceedings of the Third International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, April 1989.

[21] V. Paxon. A survey of support for implementing debuggers.
October 1990.

[22] N. Ramsey. Correctness of trap-based breakpoint implemen-
tations. In Proceedings of 21st Symposium on Principles of
Programming Languages, February 1994.

[23] J. Robbins. Debugging windows based applications using
windbg. Miscrosoft Systems Journal, 1999.

[24] A. Vasudevan and R. Yerraballi. Sakthi: A retargetable dy-
namic framework for binary instrumentation. In Proceedings
of the Hawaii International Conference in Computer Sciences,
January 2004.

[25] R. Wahbe. Efficient data breakpoints. In Proceedings of
the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems, September
1992.

[26] R. Wahbe, S. Lucco, and S. L. Graham. Practical data break-
points: Design and implementation. In Proceedings of the
conference on Programming Language Design and Implemen-
tation, June 1993.

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

