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Abstract
We propose a primitive that can record the execution
control flow information of a system with 100% accu-
racy. Furthermore, our primitive is robust to compromise
which provides integrity of the control flow log. We im-
plement the primitive on the AMD Secure Virtual Ma-
chine uniprocessor platform running the Windows 2003
Server OS. The only software component that is trusted
in the system during runtime is XTREC itself, whose se-
curity sensitive portion is less than 1100 lines of code
which makes it amenable to formal verification to en-
sure security and safety. Our experimental results show
that our framework latency is minimal for realistic ap-
plications and that the approach is viable for enterprise
settings.

1 Introduction
Current operating systems and applications continue to
be plagued by security vulnerabilities that enable an at-
tacker to compromise a system and execute arbitrary op-
erations. In fact, new vulnerabilities that enable a remote
attacker to compromise a system are still discovered on a
weekly basis. In such an environment, an operator of ap-
plications with security-sensitive data would like to an-
swer two important questions: given a newly discovered
vulnerability, did attackers use this vulnerability to com-
promise his/her systems; and if yes, what operations did
the attackers perform?

Instruction-level control flow logging helps answer
these questions. Given a log of the exact execution con-
trol flow of an entire system, all operations can later be
reconstructed. Such information can even be used to
demonstrate that some operation did not happen, which
is a highly desirable property to ensure information as-
surance.

To illustrate these points, we consider the Haxdoor
malware [15] which compromised over 60% of systems
in Europe in 2006–2007 resulting in massive data theft

and financial loss [14]. The attacks made use of the
A-311 Death Backdoor [32] which enables a remote at-
tacker to take complete control of a system, perform at-
tacks, and remove itself completely leaving no trace that
it ever executed. In the case of Swedish bank Nordea,
attackers used the malware to steal relevant informa-
tion from systems within the bank and performed inter-
nal transfers over the next 15 months, resulting in the
loss of over a million dollars [14]. Instruction-level con-
trol flow logging would enable concerned enterprises to
know whether they had been affected after the malware
was documented, and what operations the attackers per-
formed.

Given the importance of instruction-level control flow
logging, the goal of this work is to provide an unobtru-
sive and efficient mechanism that provides this property
for current legacy computing environments, such as Win-
dows and Linux. We seek an approach that does not man-
date ad hoc hardware or large-scale design changes to
existing operating systems or applications.

We propose a framework codenamed XTREC , which
logs the control flow of the entire system (including the
OS and applications) in real-time at the instruction-level.
Furthermore, XTREC also collects important data from
the OS to annotate the log at a coarser level (such as
an executable file name, kernel driver or the memory
region a set of control flow instructions belongs to).
XTREC features 100% accuracy, while providing ro-
bustness against subversion and integrity of the control
flow log.

We implement XTREC as a tiny hypervisor on the
AMD Secure Virtual Machine (SVM) platform running
the Windows 2003 Server OS. XTREC uses the Branch
Trace Message (BTM) feature (available in all x86-class
processors) in addition to secure software-based annota-
tions to provide accurate fine-grained execution control
flow recording. Our system uses a trusted logging in-
terface on the target system where it is deployed (typi-
cally a gigabit Network Interface Card (NIC) on a PCI-



Express Bus) and stores the log on a trusted system (typi-
cally a storage area network or disk array). Furthermore,
XTREC employs hardware virtualization features and
DMA protection which are built into current processors
and chipsets to defend itself against any form of attack.

This paper makes the following contributions: (a) we
design and implement a real-time instruction-level con-
trol flow logging mechanism which is 100% accurate
while simultaneously ensuring log integrity; (b) high-
level annotations separate control flow information into
individual memory regions as perceived by the OS dur-
ing execution; (c) minimal code size facilitates formal
verification; (d) minimal OS Kernel interface requires
minimal changes to the OS Kernel; (e) we show the effi-
cacy of the framework by analyzing the Haxdoor/A-311
attack and show how XTREC can be used to prove that
the system was compromised.

2 Assumptions and Threat Model
In the following description, we mark the requirements
that we can relax with “*”; in Section 6.2 we then de-
scribe how they can be relaxed.

We assume the following hardware: x86-class unipro-
cessor, hardware support for CPU and physical memory
virtualization, hardware support for attestation*, hard-
ware support for branch trace messages, storage area net-
work for logging purposes, reliable high–speed network
(optical fiber/EMI–resistant ethernet), and a gigabit NIC.

We furthermore make the following trust assumptions:
processor features (hardware virtualization, hardware at-
testation, branch trace messages and physical memory
virtualization) that our security relies on are free of vul-
nerabilities, pre-boot stage including the BIOS is not ma-
licious*, BIOS only accepts signed updates*, BIOS does
not allow third party SMM handlers*, gigabit NIC is not
malicious, and XTREC is free of vulnerabilities. Given
the dramatically reduced TCB of XTREC compared to
previous work, we argue that this last trust assumption
is much easier to achieve for us than for previous works.
We further discuss this point in Section 7.

Finally, we assume that the OS Kernel does not modify
itself during runtime, but this assumption is not needed
for any other privileged or unprivileged code (kernel
modules, kernel libraries, applications, etc.). We elab-
orate on this assumption in Section 3.7.2.

We consider a system which can execute any form of
code in either real or protected mode with or without vir-
tual memory. The code executing in the system (apart
from the OS Kernel) can be of any nature (polymorphic,
obfuscating, self-modifying etc.) and can execute at any
privilege level.

We consider an attacker without physical access to
tamper with the CPU, chipset, memory controller, mem-
ory or the trusted NIC–which form our hardware TCB.

The attacker can use any method to take control of the
system (XTREC is assumed to be secure) either locally
or remotely. As a result, the attacker can execute any
arbitrary code within the system.

3 Design
In this section, we present the design of XTREC . We
start by describing our design principles and goals. We
then give an overview of XTREC , followed by the de-
tailed design of its components.

3.1 Principles and Goals
We aim to achieve the following design principles.
(a) Ensure execution control flow logging at the
instruction–level, (b) Ensure complete accuracy of in-
formation logged (the execution control flow informa-
tion logged is exactly what took place on a system), and
(c) Ensure integrity of logged information. Based on
these principles, our goals are to: (i) provide a control
flow logging mechanism that is suitable for online de-
ployment in untrusted systems, (ii) ensure that the frame-
work always starts during system startup and always op-
erates during the lifetime of the system execution, (iii) be
able to classify the logged information at a virtual ad-
dress space level, (iv) be able to classify the code re-
gions within a virtual address space into those that are
OS allocated (process, arbitrary memory region, device
driver, user or kernel mode library) vs. direct manip-
ulation of system structures, (v) keep the code size of
XTREC small to make it amenable for formal verifica-
tion, and (vi) keep the changes to the OS Kernel minimal
enabling ease of portability and keeping the interface of
XTREC to the OS Kernel minimal to reduce the attack
surface.

3.2 Overview
XTREC is intended for online deployment on target un-
trusted systems or hosts. Since XTREC collects large
volumes of real-time information, our system currently
relies on a fast transmission medium such as a gigabit
network card/connection and stores the collected log on
a trusted entity (log store). The host would typically be
an enterprise server or workstation while the log store
would be a storage area network or an inexpensive disk
array system such as ATA over Ethernet.

Figure 1 shows the position where XTREC resides in
a host and its internal architecture. XTREC resides at
the lowest level between the underlying hardware and the
host OS. The framework consists of a Loader and a Run-
time. The Loader is only used during system startup and
is discarded thereafter.

The Loader gets control during system startup from a
trusted pre–boot stage (e.g., TCG compliant BIOS, Se-
cure Boot, etc.). Thus, we can guarantee that XTREC ’s
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Figure 1: XTRECArchitecture (Greyed portions repre-
sent Trusted Components during both startup and run-
time, Shaded portions represent Trusted Components
only during startup and Cross–Hatched portions repre-
sent Untrusted Components that are Write–Protected)

Loader always gets control when the system is powered
up. XTREC ’s Loader then employs hardware attestation
(e.g., TPM–based attestation) to establish a dynamic root
of trust (as a result also ensuring that it is running in its
unmodified form). It then initializes the CPU, chipset,
memory controller and the trusted NIC and loads the
Runtime into memory and protects it against any mod-
ifications (such as via DMA). Finally, it hashes the Run-
time to verify the integrity of its code and data, and trans-
fers control to it.

The Runtime is composed of an Isolation Layer, a
Control Flow Recorder, an Annotation Engine, a Logger
and a Shielder. The Isolation Layer isolates the execution
of the host OS from XTREC and its components and en-
sures that XTREC has complete control over the host at
all times. The Control Flow Recorder is responsible for
recording the execution control flow of the host system
at an instruction level. The Annotation Engine inserts
details which helps in giving a high–level connotation
to the recorded control flow information. The Logger is
responsible for transmitting the recorded information to
the log store, while the Shielder protects XTREC from
subversion. The XTREC Runtime initializes itself, deal-
locates all memory consumed by the Loader, and begins
execution of the host OS boot code. The following sec-
tions describe each component of XTREC ’s Runtime in
detail. Note that even though the Isolation Layer and the
Shielder may seem to do a similar task, we keep the Iso-
lation Layer separate to aid in porting our system to var-
ious hardware virtualized architectures (e.g., Intel VT).

3.3 Isolation Layer
Our TCB consists of the CPU, chipset, memory con-
troller, memory and the trusted NIC used for transmis-
sion. XTREC needs to be isolated from the host OS so
that it can record the control flow of the host, while si-
multaneously defending against any attacks potentially
originating from a compromised OS. Based on our TCB,
we rely on CPU-based protections to provide this isola-
tion. CPU-based protections are based on privilege lev-
els whereby higher privilege code can modify its own
protections as well as the protections of lower privileged
code. Usually, the OS Kernel is the highest privileged
component in the system. Thus, XTREC must execute
at a higher privilege level than the OS Kernel itself. We
use the hardware virtualization features built into com-
modity processors to execute at the privilege level of a
Virtual Machine Monitor (VMM).

The Isolation Layer component of XTREC acts as a
bridge between the host OS environment and XTREC ’s
internal components for various events that occur inside
the host OS that need intervention by XTREC . The Iso-
lation Layer component also ensures that such events are
first delivered to XTREC , which in turn can choose to
let the host OS see the event if needed. The Isolation
Layer ensures that all operating modes of the host OS
are run with hardware–assisted physical memory virtual-
ization. This ensures that any address translation inside
the OS resulting in a physical memory address can be
processed by XTREC before it is passed onto the mem-
ory controller. This in turn enables the framework to set
desired protections on physical memory regions within
the host OS without having to manipulate the host OS
paging structures.

3.4 Control Flow Recorder
Our design goal with instruction–level control flow
recording is not to modify any code executing in the host
in any fashion so as to support any form of commodity
code. As a solution, we could employ dynamic binary
translation within our hypervisor to execute the host OS
and any code within it and track control flow instructions.
However, this solution leads to a huge increase in our
framework code size making it more susceptible to vul-
nerabilities.

Instead, we use the processor–supported BTM mecha-
nism for instruction–level control flow recording. BTMs,
supported by all x86–class of processors. BTMs are
emitted by the processor for every branch (conditional or
unconditional) that is taken by the CPU. These include
conditional jumps, unconditional jumps, loops, proce-
dure invocations, returns from procedures, interrupts, ex-
ceptions, and return from interrupts and exceptions. The
BTMs are usually sent out on the system bus, but the
processor can also be configured to send the BTMs to
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Figure 2: XTREC Control Flow Recording: (a) Using CPU Branch Trace Messages for Instruction-level Control
Flow Recording, and (b) Using OS Kernel to add Annotations for high–level details. (Greyed Areas represent Trusted
Components while Cross–Hatched Areas represent Untrusted Components that are Write–Protected)

system physical memory. Figure 2a shows a fragment of
code in memory and the corresponding BTMs generated
by the processor.

BTMs occur irrespective of the operating mode or
privilege level of the CPU. This is crucial to our design,
since we do not need to modify any code executing in
the host to enable recording control flow instructions.
Further, BTMs are directly generated from the Execu-
tion Unit of the CPU, so the CPU will always generate
a BTM irrespective of the type of control flow trans-
fer. Thus XTREC can support any form of commod-
ity code such as self–modifying, polymorphic or obfus-
cated, code which exploits processor specific microarchi-
tectural features (e.g., branch prediction), etc. Also, the
BTM feature is controlled with a very small set of pro-
cessor registers which helps keep our framework code
base tiny. Note that we do not allow the OS kernel to be
self–modifying. This preserves the integrity of Annota-
tors that are deployed within the OS Kernel as explained
in Section 3.7.2.

3.5 Annotation Engine
It is very difficult to perform log analysis by solely re-
lying on instruction–level control flow recording. While
we can obtain memory addresses of control flow transi-
tions from the log, it would be beneficial if the log con-
tains additional information such as the executable file,
library, driver or memory region (process space, user or
kernel stack, kernel memory pool etc.) the memory ad-
dresses belong to. This is important since an OS can have
various processes that are executed concurrently and can
dynamically map the same executable, library or driver
to a different memory range during execution. Having
such high level information eases the process of log anal-
ysis by separating the control flow into individual mem-
ory regions as perceived by the OS during execution. We
rely on the host OS kernel to provide us with such infor-

mation. However, we do not trust the OS Kernel in any
fashion to keep our TCB minimal.

3.5.1 Annotators and Annotator Control Flow Set

We modify the host OS kernel and insert what we term
Annotators at appropriate locations. An Annotator qual-
ifies a range of allocated memory by associating it with
an entity which can be a process, kernel driver, kernel li-
brary, user library, dynamic memory allocation or stack.
It gathers appropriate information (Annotation) about the
entity such as process, driver or library names, memory
base and size when control flow reaches the point where
it is inserted and transfers that data to XTREC .

An annotator is split into three parts. The first part is
inserted at the beginning of the top–level function that is
responsible for creation and deletion of the entities and
grabs the input parameters (annotation-data). The sec-
ond part is inserted in the locked operation of actually
updating the kernel data-structure for the entity and the
third part is inserted at the end of the top–level function
before it successfully returns.

An Annotator Control Flow Set (ACFS) is a set of
all pre–computed legitimate control flow transitions from
the entry to the top–level function containing the Anno-
tator until its return for a particular OS Kernel build.

3.5.2 Bypassing Annotations

Since the host OS is untrusted, an attacker can bypass an
Annotator for a particular operation. As an example, let
us consider the operation of allocating a range of mem-
ory for executing code. There are two ways in which an
attacker could allocate memory while bypassing Annota-
tors: (i) the attacker could allocate the range of memory
by directly manipulating the host OS paging structures,
and (ii) the attacker could use the host OS to allocate a re-
gion of memory for code execution, by executing a copy
of the host OS code within another memory region until
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the Annotator.
While the attacker can manage to bypass an Annotator,

he/she cannot prevent control flow instructions that are
recorded when code is executed within a memory region
(see Section 3.4). Thus, during log analysis, XTREC
will not find any Annotations corresponding to the mem-
ory regions of the control flow instructions. XTREC will
then classify the memory regions as being allocated via
direct manipulation as was the case (the attacker directly
manipulated the OS paging structures in (i) and executed
a copy of the OS code in (ii)).

3.5.3 Inserting Malicious Annotations

An attacker can insert malicious annotations by manipu-
lating annotation–data either through code or via DMA.
Using code, an attacker can jump directly to an Annota-
tor or exploit a control flow bug in the host OS Kernel
code resulting in an arbitrary Annotator being executed.
Note that an attacker cannot directly modify the host OS
Kernel to change Annotators (see Section 3.7.2). Using
DMA an attacker can use a device to write to a specified
memory region without employing the CPU.

It is important that such malicious or faulty annota-
tions be removed since it can lead to inaccurate analysis.
As an example, consider a legitimate annotation which
records details about a process creation. Consider, a ma-
licious annotation which records the exact same details,
but changes the process name. Thus, during analysis
there would be no way to tell if a given set of control
flow transitions belonged to the legitimate process or to
the process recorded by the malicious annotation.

XTREC handles DMA–based malicious annotations
by using hardware DMA-protections. It marks all other
memory–regions in the host OS non–DMA except the
DMA physical–memory pool. Code–based malicious
annotations are handled during log analysis. A legiti-
mate annotation is one which has all three annotator parts
in the log and whose control–flow does not deviate from
the ACFS encompassing the three parts and whose first
and second part have the same annotation–data.

3.6 Logger
XTREC ’s logger is responsible for sending the recorded
control flow information to the log store. Our design is
such that recording and logging can proceed simultane-
ously in the host in real–time. We use a fast gigabit NIC
for transmission purposes. We also use Direct Memory
Access (DMA) transfers to transfer data between the host
memory to the log store using the trusted NIC. DMA
transfers occur directly between the host memory chipset
and the device and do not involve the CPU.

Our design uses two types of memory buffers. A
Record Buffer is a region of memory that XTREC uses to
record control flow information in a host. Once a record

buffer is full, it is marked as a Log Buffer and recording
continues at the next available record buffer. If there are
no record buffers remaining, the logger polls the trusted
NIC (polling phase) until it gets the signal that the previ-
ous DMA transfer was successful. Once it gets the sig-
nal, it marks that log buffer as a record buffer. When a
buffer is marked a log buffer, a DMA transfer is simulta-
neously initiated between the trusted NIC and the buffer
in the host. Our experimental results show that current
gigabit NICs are fast enough not to cause any latency in
the polling phase.

3.7 Shielder
Figure 3a shows the possible points of attack against
XTREC . These include the host OS kernel code, pro-
cessor critical structures managed by the host OS, CPU,
memory, trusted NIC registers and XTREC itself. The
shielder component of XTREC protects against these at-
tacks and ensures the persistence and integrity of control
flow recording, annotators, logging and XTREC mem-
ory regions.

3.7.1 Protecting Control Flow Recording

The execution control flow recording mechanism used
by XTREC relies on processor BTMs. The BTM feature
is controlled by certain processor registers and events.
The shielder intercepts any access to such registers and
events via the Isolation Layer and denies access to them
(usually simply returning back to the code). Further, we
assume that processor–supported BTMs are free of vul-
nerabilities and that XTREC gets control from a trusted
pre-boot stage, verifies the integrity of its code and oper-
ates without any flaws. Thus, we can ensure that control
flow recording is always in effect and is uncompromised.

3.7.2 Protecting Annotators

To ensure that Annotators are always in effect and are
uncompromised we need to ensure the following: (a) the
host OS Kernel with Annotators always gets control dur-
ing host startup, (b) the host OS Kernel always remains in
control, and (c) the host OS Kernel is not modified in any
form. Cases (a) and (b) address the situation where an
attacker can install his/her own OS Kernel without An-
notators or use malicious Annotators. Case (c) addresses
the situation where an attacker can modify the existing
OS Kernel to achieve the same effect.

Ensure Host OS Kernel with Annotators always
gets control during Host Startup: If the host OS Kernel
code is the first to get control when XTREC ’s Runtime
runs the host OS for the first time (e.g., Linux), we can
protect the OS Kernel code from any modifications, ver-
ify its integrity and transfer control to it. However, for
some OSes (e.g., Windows) the OS startup process con-
sists of intermediate steps before the actual OS Kernel
gets control. So we adopt a more general design. Fig-
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ENSURE_OSKERNEL_GETS_CONTROL(codeRegionList){
  startCodeRegion = 
      getFirstElement(codeRegionList);
  do{
    nextCodeRegion = 
      EXECUTE_CODEREGION(startCodeRegion);
    if (nextCodeRegion is not within 
         codeRegionList)
     return ERROR
    else if (nextCodeRegion is 
           osKernelCodeRegion)
     return SUCCESS
  }while(TRUE);
}

EXECUTE_CODEREGION(codeRegion){
  writeProtectAndVerify(codeRegion);
  setExecuteDisable( totalMemoryRegions –
      codeRegion);
  setExecuteDisableExceptionHandler(
      EXECUTECODEREGION_cb);
  transferControlTo(codeRegion);
  EXECUTECODEREGION_cb:
    return (region that caused exception);
}

PROTECT_CPU_CRITICAL_STRUCTURES(
criticalStructRegions){

writeProtectAndVerify(criticalStructRegions);
setWriteExceptionHandler(criticalStructRegion,
   PROTECT_CPU_CRITICAL_STRUCTURES_CALLBACK);
return;
}

PROTECT_CPU_CRITICAL_STRUCTURES_CALLBACK(){
  setReadWrite(criticalStructRegions);
  setSingleStepExceptionHandleR(SSHANDLER);
  resumeOS();
  SSHANDLER:

writeProtectAndVerify(criticalStructRegions);
    resumeOS();
}

(a) (c)(b)

Control Flow

RecorderLogger AnnotatorShielder
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Critical CPU 
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Figure 3: XTREC Shielder: (a) Protects the Host OS Kernel Code and Critical Processor Structures in the Host OS
Kernel Data along with its Trusted Computing Base (The solid lines denote access for modification while the dotted
lines denote the transfer of control to XTREC for such accesses), (b) Ensures Host OS Kernel with Annotators always
gets control during system startup and (c) Ensures Host OS Kernel with Annotators always remains in control during
runtime by protecting Critical Processor Structures

ure 3b shows the pseudo-code of our design. We enu-
merate all the possible execution code areas and their
physical memory ranges before the host OS Kernel gets
control. We term these code areas the boot–code areas
for the host OS. Before we transfer execution to the first
code area in the boot-code areas, we write protect the
code, hash the code area to verify its integrity and setup
all other memory regions to generate a processor fault
on execution. Thus, when the first code region trans-
fers control to the next, it will generate a processor fault.
At that point we repeat the same step for the next code
region and continue doing so until the generated fault
corresponds to the host OS Kernel code range—which
signifies the host OS Kernel getting control. This de-
sign ensures that control flow cannot be subverted before
the host OS kernel reaches its execution as executing any
other code apart from the boot–code areas for the host
OS will cause a processor fault which would otherwise
not happen during normal execution.

Ensure Host OS Kernel with Annotators always re-
mains in control during runtime: On the x86–class
of processors, the CPU consults certain critical memory
structures such as the IDT (for interrupt/system service
handlers) and GDT (for code and data selectors) during
the execution of OS Kernel code. An attacker, for exam-
ple, could replace the host OS system service handler and
the host OS scheduling interrupt handler ( usually located
within the IDT) to point to replacement handlers, effec-
tively installing a new host OS Kernel in operation with-
out Annotators. Thus, to ensure that the host OS Kernel
always remains in control during runtime, we need to en-
sure that such CPU critical structures are protected.

We could compare contents of OS Kernel specific re-
gions within the IDT and GDT to default values and write

protect them once they are initialized by the OS Kernel
during kernel initialization. However pocessor structures
such as the IDT and GDT can be written to after their ini-
tialization by the OS Kernel (e.g., Windows). Thus, we
adopt a more general technique to protect the processor
critical structures (Figure 3c).

XTREC write–protects the processor critical struc-
tures at the start of the host OS Kernel execution. When
there is a write to the structures, XTREC gets control
via its Isolation Layer, marks the structures read-write,
sets up the Isolation Layer to get control after a sin-
gle instruction has been executed and resumes the host
OS. The single instruction is executed with interrupts
disabled to prevent any interrupts from being generated
during the single–stepping. When XTREC gets control
after the write instruction has been executed, it write pro-
tects the structures once again. XTREC then checks the
structures for any inconsistencies and resumes the host
OS normally. The consistency check compares locations
within these structures that are essential for the function-
ing of the OS Kernel (scheduling interrupt, page–fault
handler, system service handlers etc.) — after the write
— to the default value for the host OS Kernel build in
execution. Note that XTREC will always get control af-
ter the instruction performing the write irrespective of the
instruction, since the Isolation Layer is always the first to
get control on any event generated by the processor (in
this case a single–step event).

Ensure that Host OS Kernel Code cannot be Mod-
ified: XTREC marks the OS Kernel code region as
READONLY to prevent any modifications to Annotators
or other parts of the OS Kernel. This does not affect
the normal behavior of the OS Kernel, since as per our
assumption the OS Kernel will not be modified in any
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fashion during normal execution. We could relax our as-
sumption and allow modifications to the OS Kernel by
trapping the write, and doing the write on the OS be-
half (e.g., using single–stepping). However, the approach
is not straightforward since the write could change an
ACFS that we rely on to ensure Annotator persistence
and to remove malicious annotations.

Note that the techniques presented in this section rely
on write–protect and execute-disable features supported
by the underlying hardware MMU. These features oper-
ate at a page granularity (usually 4Kb or 2MB) and hence
require the target memory region to be aligned at a page
and span a size that is a multiple of a page. This is not a
limitation since we only perform such operations on the
OS boot–code areas, OS Kernel code and the CPU criti-
cal structures which are in the OS Kernel data area. The
modifications required are minimal as detailed in our im-
plementation in Section 4.

3.7.3 Protecting Logging

To ensure that Logging is always in effect and is not com-
promised, we need to ensure that any access to the trusted
NIC originates from the XTREC Runtime alone. To do
this, the trusted NIC control and data locations (usually
in memory mapped registers) are intercepted using the
Isolation Layer to identify any access to the trusted NIC
by the host OS. In such a case, a device not-existing
message or a dummy value is returned when a device
is probed or accessed at the specified location.

3.7.4 Protecting XTREC Memory Regions

To protect XTREC memory regions, we need to ensure
that its code and data cannot be accessed directly by code
executing in the host. At any given point the host OS
can be in any of the three execution modes: Real, Pro-
tected without paging and Protected with paging (SMM
mode is the same as real mode with access to 4GB of
data). Hardware assisted memory virtualization is al-
ways in effect irrespective of the operating mode of the
guest. XTREC changes the attributes in the hardware
MMU paging structures classfying its range of code and
data as inaccessible, thereby getting control if there is
any access to its memory regions. Legitimate memory
requests (memory requests that do not fall in the range
of XTREC ’s code and data) are directly handled by the
hardware.

4 Implementation Details
In this section we discuss our XTREC prototype im-
plementation on the AMD SVM uniprocessor platform
running Windows 2003 SP1 OS in 32–bit mode. Fea-
tures and details of the AMD SVM can be found in the
AMD Developers Manual [2]. We use GRUB [18] as our
boot–loader and load the XTREC Loader via GRUB. The

XTREC Runtime is specified as a GRUB module. Once
the XTREC Loader gets control, it executes the SKINIT
SVM instruction which uses TPM–based hardware at-
testation in order to establish a dynamic root of trust.
The XTREC Loader then relocates the Runtime above
the physical memory range allocated to the host OS.
The XTREC Loader then protects the complete Runtime
from any writes, verifies its integrity, and if successful
transfers control to the Runtime which in turn runs the
host OS. We use the SHA-1 hash algorithm for verifying
the integrity of code and data regions.

4.1 Isolation Layer
The XTREC Isolation Layer sets up a SVM Virtual Ma-
chine Control Block (VMCB) specifying the processor
state upon bootup [19]. It then transfers control to the
host OS boot–code within a Hardware Virtual Machine
(HVM) using the VMRUN instruction. The Isolation
Layer sets up the VMCB for the following intercepts:
processor debug (#DB) exception, VMMCALL instruc-
tion execution, I/O data access to PCI address space,
nested paging fault, and processor machine specific reg-
isters (MSR) associated with BTM. The Isolation Layer
gets control via a VMEXIT from the HVM upon which
it invokes the appropriate internal component depending
on the exit condition, e.g., on VMMCALL instruction ex-
ecution, it invokes the Annotation Engine to record the
appropriate details. The Isolation Layer also sets up
the SVM Device Exclusion Vector (DEV) bit vector and
Nested Page Tables (NPT) to address the complete phys-
ical memory in the host.

4.2 Control Flow Recorder
On AMD CPUs, BTMs are managed using a set of 4
MSRs: BTM Base MSR, BTM Limit MSR, BTM Ptr
MSR and BTM Control MSR. These MSRs are modified
using the RDMSR and WRMSR instructions. Together
the BTM Base and the BTM Limit MSRs specify the re-
gion of physical memory that the processor can use for
storing BTMs, known as the BTM Buffer. The BTM Ptr
MSR contains the physical memory address within the
BTM Buffer where the next BTM will be stored. The
BTM Control MSR is used to control the BTM genera-
tion and has an option called Interrupt on BTM Buffer
End. When this option is set in the BTM Control MSR,
the processor will generate a #DB exception when BTM
Ptr MSR equals the BTM Limit MSR. The processor will
also set the BTM Control MSR to stop BTM generation
simultaneously.

Each BTM is a 96-bit datum which, includes the in-
struction pointer (segment/offset) value of the location
of the control flow instruction and the type of control
flow instruction (UNCONDITIONAL BRANCH, CON-
DITIONAL BRANCH, INTERRUPT , etc.). The first
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field of the datum is a tag or identifier which identi-
fies the BTM. Though the exact values for the tags are
processor–specific, the two common tags are 0x2 (in-
struction) and 0xD (user-defined).

The Control Flow Recorder currently uses two 64MB
BTM buffers for its operations. It initially marks both
buffers as record buffers and sets the BTM Buffer to one
of the record buffers. It then sets the BTM Control MSR
to begin recording just before execution is transferred
back to the OS via the Isolation Layer. The Recorder
processes the #DB event from the Isolation Layer in or-
der to switch between recorder and log buffers. Upon a
#DB event, the Control Flow Recorder reads the trusted
NIC status to see if it is currently in a DMA operation.
If so, it polls the NIC status until the DMA operation
completes, else it marks the current record buffer as the
log buffer and marks the log buffer as the record buffer
and initiates a DMA operation. It also sets the BTM Base
MSR to point to the record buffer, sets the BTM Control
MSR to begin recording and returns control to the host
OS via the Isolation Layer.

4.3 Annotation Engine
The implementation of the Annotation Engine consists
of two components: (i) the Annotators which are a part
of the untrusted host OS Kernel, and (ii) the Annotation
Engine which is a component of XTREC .

We used the Windows Research Kernel Sources in or-
der to insert Annotators in the Windows Kernel. The
Windows 2003 SP1 Kernel is an object–oriented ker-
nel where every component of the OS (processes, files,
etc.) is represented internally as an object. It is a pre–
emptive kernel, and uses the timer interrupt for schedul-
ing. The unit of scheduling is a thread. A process is an
entity that consists of a group of threads and has a pri-
vate virtual address space. The OS divides code into two
domains: user–mode (least privileged) and kernel–mode
(privileged).

We modify functions MmMapViewOfSection,
MmUnmapViewOfSection, MmCreateTeb, trMmCreate-
KernelStack, trNtAllocateVirtualMemory and MiDelete-
VirtualAddresses such that they transfer control to
XTREC using the VMMCALL instruction. We pass
parameters directly via processor registers for all An-
notators. When the Annotation Engine gets control
within XTREC , it uses the user–defined tag for BTM
and records the Annotation within the current recorder
buffer. It then increments the BTM Ptr MSR by the size
of the Annotation (in bytes) aligned to 96–bits.

4.4 Logger
We use the Intel 82572EI gigabit NIC as our trusted NIC.
It has provisions for a ring buffer–based transmit mech-
anism. It supports ring buffer–based descriptor mange-

ment. The ring–buffer is composed of 16–byte entries
with a maximum size of 1MB. Each 16–byte entry points
to a data buffer that needs to be transmitted, which in-
cludes the data buffer size and other control information
for the data buffer. The 82572EI has support for transmit-
ting up to 9K bytes of data buffer per descriptor (called
Jumbo Frames). The ring–buffer has a head pointer and
a tail pointer. Once the ring–buffer descriptors are setup,
the NIC control register can be written to in order to
transmit all data buffers pointed to by the head pointer
and tail pointer using a single DMA operation.

The Logger sets up the 82572EI’s ring buffer to point
to a total of 128MB of physical memory during initializa-
tion. This encompasses both the 64MB record buffers for
XTREC . When the logger is used transmit a log buffer,
it simply adjusts the tail pointer to point to the end of the
appropriate 64MB block and writes to the control regis-
ter to start the DMA.

4.5 Shielder
Protection of Control Flow Recording: XTREC sets
up MSR intercepts in the VMCB for the BTM Base,
BTM Limit , BTM Ptr and BTM Control MSRs. We no-
tice that these MSRs are never accessed in current OSes
(Windows and Linux), applications or debugging tools.
Our system currently disallows any access to such MSRs
upon the intercept triggering.

Protection of Annotators: The Windows boot pro-
cess uses 3 boot–sectors that setup and transfer control
to ntldr which is the Windows boot–loader. ntldr is
made up of a real mode component and a protected mode
component. The protected mode component is a regu-
lar portable executable. The real mode component does
some initialization and transfers control to the protected
mode component which then loads the actual Windows
kernel. The protected mode component also invokes nt-
detect.com, a real mode executable for hardware detec-
tion during bootup.

The boot–sectors, basically contain code to access the
filesystem in order to read ntldr into memory. We discard
the boot sector code and directly load ntldr as a module
to GRUB. The XTREC loader then copies the ntldr mod-
ule to its starting location (logical address 2000:0000 in
real mode). We also modifed ntldr and ntdetect.com such
that their code were page–aligned in memory. Since we
did not have access to the sources of the boot phase of
Windows 2003 SP1, the modification was carried out in
binary. However, since the real mode portion of ntldr and
ntdetect.com are 16–bit real mode executables, they use
data segment relative addressing to address their data.
This is carried out using a single MOV instruction at
the start of their code. We padded the code regions of
the real mode portion of ntldr and ntdetect.com with ze-
ros to ensure they were page–aligned and modified the
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MOV instruction to load the offset of the data segment
accordingly. The protected mode portion of ntldr is a
regular portable executable loaded at physical address
0x00400000 and adheres to page alignments for its code
region. These modifications ensure that the boot phase of
Windows conforms to our design as discussed in Section
3.7.2

We modified the Windows Kernel (ntoskrnl.exe) to in-
clude some initial code and also inserted page–aligned
data for the GDT and the IDT. The initial code then
copies the IDT given by ntldr (which is not page–
aligned) into the page aligned IDT and sets up the IDTR
to point to the new IDT using the LIDT instruction. This
code also sets up the page–aligned GDT so that the first 3
entries (corresponding to the NULL selector, the kernel
code and kernel data selectors) fall on a separate memory
page while the rest of the original GDT (passed by ntldr)
falls on another memory page. It then uses the LGDT in-
struction to load the page–aligned GDT. The initial code
finally transfers control to XTREC via a VMMCALL.

At this point the XTREC runtime write–protects
the physical address range of the code regions of
ntoskrnl.exe, hal.dll, bootvid.dll and kdcom.dll, which
collectively form the Windows kernel (and whose phys-
ical memory addresses are constant for a given kernel
build) by setting the corresponding entries in the NPT
to READ-ONLY . The runtime also DEV protects the OS
kernel code and data regions. The runtime then hashes
the Windows Kernel code and data regions and compares
it against the stored hash within XTREC . If the compar-
ison is successful, the runtime obtains the GDT and IDT
physical addresses write–protects their memory pages.
Note that our implementation splits the GDT into two
memory pages and only write–protects the first memory
page. This conforms to our design, and at the same time
is very efficient, since Windows modifies GDT entries on
every context switch. However, since the first three en-
tries of the GDT are never modified, we never incur any
runtime overhead due to GDT modifications.

Protection of Logging The Intel 82572EI Gigabit
NIC uses the PCI space for access to its register. The
PCI space is accessed using two I/O registers, the PCI
address and the PCI data register. XTREC sets up an
MSR intercept on the PCI data register. When the inter-
cept triggers and control is transferred to XTREC , the
PCI address register is examined to obtain information
about the bus, device and function that is used to address
the device. If it matches that of the trusted NIC, and if the
access is for the IDENTIFIER offset in its PCI configura-
tion space, we return the value 0xFFFFFFFF to indicate
no device at that location. For any other offset, we return
the value 0x00000000 signifying uninitialized.

Protection of XTREC XTREC sets up the attributes
of the memory pages corresponding to the physical

memory region occupied by its code and data to NOT-
PRESENT in the NPT. Thus, any access to XTREC ’s
code and/or data will result in a nested page fault exit,
which is handled by the framework to disallow any form
of access (read or write).

5 Evaluation
In this section we evaluate our implementation. We start
by presenting our evaluation testbed. We then present
details on the code size of our implementation and the
modifications made to the OS Kernel. We then report the
runtime performance of our system and follow that with
a case study of the HaxDoor.KI malware.

5.1 Testbed
Our testbed consists of three components: a system with
XTREC which forms the host, a system which forms the
trusted log store and a gigabit switch and link to con-
nect them together. The host is an AMD system running
the Barcelona Stepping B3 Quad–Core CPU at 2.00Ghz
(with multicore support turned off in the BIOS), 4GB
DDR2 667 RAM, PCI-Express BUS, 250GB Hard disk
with Windows 2003 SP1 in uniprocessor mode. We con-
figured XTREC to use 256MB and the rest was used by
Windows Kernel. We used an Intel 82572EI gigabit NIC
as our trusted NIC on the PCI- express Bus. The system
used to store the log is an Intel system running the Core
2 Duo at 2.66GHz, 4GB DDR2 667 RAM, 1TB Hard
disk, Intel 82572EI gigabit NIC and Linux 2.6.23.1. The
gigabit switch we used was Dell PowerConnect 5324.

5.2 Code Size and OS Modifications
In this section we present details on the code size and
modifications made to the OS kernel and show that the
sizes are within means of performing a manual and ana-
lytical audit on the codebase of XTREC to rule out po-
tential vulnerabilities.

The XTREC codebase consists of: debug code (433
lines), header files (3540 lines), loader code (1307 lines)
and runtime code (1047 lines). We use the sloccount [36]
utility to count the source lines. The debug code is only
used on test systems and is used to print debug messages
to a serial console. It would not be used on a produc-
tion system. The header files have C language declara-
tions, constants and structures and have no executable
code or macros that expand to code. The loader code is
only used during the startup of the system after which it
is discarded. The runtime code is responsible for control
flow recording and logging. Most importantly, the secu-
rity sensitive portion of XTREC , the runtime, is less than
1100 lines of executable code.

XTREC interfaces to the OS kernel via only 1 hyper-
call interface that is used to add Annotations to the log
during execution. Also, the parameters passed to this in-
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terface are very well-defined which makes it possible for
the framework to validate the arguments. Thus, the at-
tack surface through the kernel is minimal. We modified
the Windows 2003 SP1 Kernel to insert the XTREC hy-
percall interface to get information about process, thread
and memory regions. There are 12 uses of the hyper-
call interface and we inserted less than 100 lines into the
Windows Kernel.

5.3 Performance Measurements
We now report the runtime performance of XTREC . Our
experiments consist of microbenchmarks and application
benchmarks.

5.3.1 Microbenchmarks

XTREC adds overhead to system operation in four ways:
(a) due to BTMs emitted by the processor, (b) due to an-
notators, (c) due to BTM buffer overflow, and (d) due to
transmission of log buffer.

BTM latency depends on the CPU and the memory.
To measure the BTM latency, we used a tight loop with
a CALL instruction and measured the time before the
CALL and at the start of the subroutine. The BTM Buffer
overflow latency is the latency due to the triggering of a
#DB exception. We wrote a small kernel driver which
invokes the #DB exception and measured the round–trip
time from the OS to XTREC and back. The Annotator
latency is due to the VMMCALL instruction which trans-
fers control to XTREC , coupled with inserting the corre-
sponding Annotation. As discussed in Section 4.3, An-
notators in XTREC fall into two categories: those that
record parameters directly from registers and those that
parse the OS paging structures in addition. We used
the kernel driver to invoke an Annotator in a tight loop
and measured the round–trip time for both categories.
Similarly, we invoked the NIC transmission function by
measuring the time before and after the successful DMA
transmission of the record buffer to measure the latency
of logging. We used processor clock cycles as the unit for
our measurements and employ the RDTSC instruction to
obtain the clock cycle count. Figure 4a shows the results
of our microbenchmarks.

A point to note from the microbenchmarks is that,
though the log buffer transmission incurs a huge clock
cycle count, it only occurs once the recording buffer
is full. Further, as we show in the next section, the
DMA transfer always occurs in parallel with control flow
recording for all our experiments, resulting in no percep-
tible latency.

5.3.2 Application Benchmarks

We hypothesize that when XTREC is used, the overhead
of an application will be directly proportional to the num-
ber of branch instructions it uses and the number of times
it uses the host OS to create processes, allocate memory,

etc. Based on our hypothesis, I/O–bound applications
that have very little control decisions will have the low-
est overhead. On the other hand, compute–bound appli-
cations with high branching and memory allocations will
have the highest overhead. Also, compute–bound appli-
cations with high branching will require more log space
when compared to I/O bound applications.

To test our hypothesis we execute both compute–
bound and I/O–bound applications. For our compute–
bound applications, we choose benchmarks from the
SPEC INT and FP suite. Our I/O bound applications
consist of Postmark (with 10000 files and 10000 transac-
tions), IoZone (with defaults and read and write bench-
marks), Bonnie (with a 100MB file and read and write),
Tar (on the Linux Kernel 2.6.23 source tree) and Ttcp
(with 16MB send and receive). For comparison purposes
we execute these applications on the native system and
the system with XTREC . We ran each of these appli-
cations 3 times on each platform. Figure 4b shows the
result of our application benchmarks.

From the application benchmark results, we observe
that all I/O–bound applications run close to their na-
tive speed with XTREC . The only exception is Bonnie,
which incurs a latency similar to that of compute–bound
applications. We attribute this to the internal architecture
of Bonnie, which issues reads and writes to the disk sys-
tem one byte at a time using a loop structure. Thus, in
our tests with a 100MB file, it results in a lot of branch
instructions.

Compute–bound applications result in higher latency
and their latency is proportional to the number of branch
instructions. As examples, 433.milc and 470.libm almost
run at native speed when compared to the other compute
bound benchmarks. This is due to the fact that the num-
ber of dynamic branch instructions in those benchmarks
is very minimal as compared to the others [27]. At the ex-
treme ends of the spectrum are the best–case application
(with no branches) and the worst–case application which
just performs a tight loop generating the maximum num-
ber of BTMs. The former executes at native speed while
the latter runs at 20% of native speed.

Figure 4c shows the log size generated by the com-
pute and I/O bound applications. As seen from the figure,
the log size of an application is proportional to the num-
ber of branch instructions. As examples, 400.perlbench
and 458.sjeng which have the higher number branch in-
structions generate larger logs. Note that even though the
worst–case application has the highest number of branch
instructions, the log generated by it is very small. This
is due to the fact that the Worst-case application in our
case was a tight loop which resulted in the same BTM
being emitted for each iteration of the loop which results
in a very high compression ratio. Though the compres-
sion ratio is application specific, the average compres-
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Benchmark Log Size (in GB) Compression

Normal Compressed* Ratio

Compute Bound Applications

Best-case ~0                       ~0                       -

400.perlbench 238.145         10.824                  22.06

401.bzip2                                  220.534           8.482                  26.05

403.gcc 131.812           5.492                  24.01

433.milc               11.895            0.626                 19.02

444.namd 103.062            4.122                 25.08 

445.gobmk 234.498           8.685                  27.18 

453.povray 73.492           3.449                  21.30

458.sjeng 256.196         10.674                  24.18

470.libm 13.654           0.620                  21.40

473.astar 106.942           4.113                  25.41

Worst-case 0.562           0.001                  562

 I/O Bound Applications

Postmark 0.812           0.173                  4.69

Iozone 1.062           0.041                  25.90

Bonnie 2.687           0.034                 79.02

Tar 0.625          0.078                   8.01

Ttcp 0.007           0.0002                 35

Mixed Applications

Apachebuild 16.637            0.780                21.32

Webserver Access for 1 Day 1980.133        358.435                 5.52

Idle System for 1 Day 15.436           1.406                 10.97

                              BTM       Qualifier           #DB          NIC Buffer

                                           P*       No P*                     Transmit (64MB)

Latency

(in clock cycles)
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Figure 4: XTREC Benchmarks: (a) Micro–Benchmarks showing various ways in which XTREC adds overhead to
system operation, (b) Application–Benchmarks showing that Compute Bound Applications with high branching logic
result in higher overheads when compared to I/O Bound Applications which run almost at native speed, and (c) Log-
Size Measurements showing that the log generated by XTREC is well within limits for current enterprise settings

sion ratio during our experiments, as seen from Figure 4c
is around 20 with gzip level 5 compression. Note that the
compression is done in real–time by the log store.

We also performed a couple of experiments to test the
sustained log size of some applications with XTREC .
For the first experiement, we ran the apache ab bench-
mark tool for a period of 24 hours with 128 simultaneous
clients simulating a real–world webserver access. For the
second experiment, we let the host idle for a period of 24
hours. As seen from the table, the log sizes for both ex-
periments over a 24 hour period is within limits for an en-
terprise storage area network. While the time period for
which logs should be maintained, depends upon the task
for which XTREC is used and the available resources,
we believe, given the size of our logs, that enterprises
should be easily able to maintain logs for a period of 3–4
months.

Finally, we performed another experiment to isolate
the component(s) of XTREC responsible for the latency.
We modified the logger code to test for the DMA trans-
fer to be successful or not before switching to the record-
ing buffer on a BTM buffer overflow. We noted that the
logger code never had to wait during all our application
benchmarks which showed that the DMA was occuring
in parallel to the recording and contributed nothing to
the latency. Further, we also noted that Annotators con-
tributed very minimally to the results. Hence we con-
clude that the processor BTM is the source of the major-

ity of latency in our experiments.

5.4 Case Study of Haxdoor.KI
In this section we discuss the Haxdoor.KI malware [15]
employing the A-311 Death Backdoor [32] and show
how one can determine that it executed on a host using
XTREC .

Haxdoor.KI is both a rootkit and a backdoor allowing
a remote attacker to take complete control of the system
and steal important information such as keystrokes, pass-
word and sensitive files. Upon infection, the rootkit com-
ponent (named xopptp.sys) is registered with the OS reg-
istry and started. The registering process ensures that the
malware is always loaded on the next OS bootup. Also,
a backdoor DLL (named xopptp.dll ) is injected into the
winlogon.exe process and also registered with the winlo-
gon notify DLLs (a set of DLLs that are automatically
loaded by the winlogon process on startup). This al-
lows the backdoor to be resident and active in system
memory without any user intervention. The rootkit also
hides critical files and processes belonging to the mal-
ware, from the user. The backdoor DLL uses the A-311
Death Backdoor library and listens on port 16661 for a
remote attacker. The port itself is password protected and
can only be activated by the A-311 Death Remote Admin-
istration Toolkit (RAT). The backdoor allows a variety of
operations to be performed in the system such as: file up-
loads and downloads, trojan updates, activating keyboard
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hooks, stealing clipboard data, and desktop screenshots.
One of the most interesting feature of the backdoor is the
ability to uninstall itself from the system leaving no trace
that it was ever there.

We obtained a sample of Haxdoor.KI from Offensive
Computing [11] and deployed it on our test host system
by executing the malware executable. We then connected
to the host on port 16661 from another system using the
A-311 RAT . We then performed the following actions us-
ing the RAT: (a) connected, (b) uploaded and installed
the keylogger on the host, (c) launched internet explorer
on the host and entered a site that was password pro-
tected, (d) downloaded the captured key log file, and (e)
uninstalled and removed. We also obtained functional
and internal details of the Haxdoor.KI malware [15, 21]
and then searched the XTREC log for characteristic in-
formation pertaining to the malware as well as our ac-
tions. Figure 5 shows the log we reconstructed for our
actions (a), (b) and (e).

Lines 1–2 of Figure 5 correspond to the host OS Ker-
nel initializing and creating the winlogon.exe process.
Lines 3–8 correspond to the winlogon.exe process ad-
dress space being initialized by the OS including map-
ping the malware DLL xopptp.dll. Lines 9–14, show
the control flow trace of the connect request performed
to port 16661. As anticipated, the control flow consists
of modules ws2 32.dll and wsock32.dll which form the
BSD socket layer in Windows. Line 14 shows the con-
trol flow into the malware DLL xopptp.dll as a result of
a successful accept function.

Lines 15–20 of Figure 5 correspond to the keylogger
(loggerB.exe and loggerB.dll) being installed and initial-
ized on the host. Lines 15–17 correspond to the keylog-
ger process creation using the ShellExecute API while
lines 18–20 correspond to the keylogger initialization by
setting a system wide keyboard hook using the SetWin-
dowsHookEx API.

Lines 20–27 of Figure 5 correspond to the uninstall
and remove action of the malware. The unload opera-
tion of the malware consists of two steps. In the first
step, a DeviceIOControl API call is issued to the rootkit
(xopptp.sys) which causes its unload function to be exe-
cuted resulting in its removal from memory and registry.
In the second step, a FreeLibrary API call is issued which
causes the backdoor DLL (xopptp.dll) to be unloaded
from the winlogon.exe process context. After the above
two steps are completed, the malware files xopptp.dll and
xopptp.sys are deleted with other supporting files from
the system thereby wiping its trace from the system.

Using details similar to that shown in the log of
Figure 5 and knowing that the information logged by
XTREC is accurate and uncompromised, we can deter-
mine that Haxdoor.KI (or an equivalent) was therefore
executed in the host.

6 Limitations and Future work
6.1 Limitations
XTREC write–protects the OS Kernel code and critical
CPU structures to ensure Annotator persistence (see Sec-
tion 3.7.2). Thus, any code that modifies the OS Ker-
nel code cannot be logged currently. However, we con-
sider this as a positive side effect since, on contempo-
rary OSes the Kernel code is never modified during run-
time and hence such an activity can be considered ma-
licious. We also realize that in certain situations, such
as using XTREC to document a vulnerability which em-
ploys such mechanisms, this would be a limitation.

XTREC currently only logs control flow information
and not data flow. While control flow information is
sufficient to identify a large class of code, it becomes
diffucult to identify certain malicious code employing
mimicry attacks where the control flow closely mimics
a benign application [34]. We are currently working on
adding data logging support to address this limitation.

6.2 Future Work
Trusted BIOS/Pre-boot:XTREC relies on hardware–
based attestation and assumes that the Loader is always
executed by the BIOS/pre–boot stage. Further, it trusts
the BIOS in its approach to ensure that the OS Kernel
gets control directly from its boot code (for applicable
OSes). XTREC could use remote verification instead of
relying on a trusted BIOS and hardware–based attesta-
tion. When the Loader gets control it calls upon an exter-
nal trusted entity (or the log store) to verify its integrity.
Also, the log store, upon receiving the initial network ne-
gotiation could remotely verify the integrity of XTREC .
The boot phase of the OS can be removed and replaced
with code which does not employ the BIOS. As an exam-
ple, the boot stage of Windows can be replaced by Reac-
tOS WinLdr [28] which is capable of booting windows
without accessing the BIOS.
SMM Mode:SMM code execute typically execute as a
result of a System Management Interrupt (SMI) in an au-
tonomous fashion in real mode. As AMD SVM provides
intercepts to handle SMI, XTREC could support third
party SMM by creating another HVM to run the SMI
handler within it. Another option is to use an opensource
BIOS such as CoreBoot [1] which does not use SMM.

7 Related Work
In this section we discuss related work in the area of ex-
ecution control flow logging. Current approaches in the
area of execution control flow logging can be broadly di-
vided into three categories: software VM based, OS level
logging, and debuggers and specialized hardware.

Software VM Based: In software VM based ap-
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    ...
01. An: PROCESS CREATE -> Pid=0x8089AA80, Ppid=0x00000000, Range=0x80000000-
    0x80050000, Name=\%SYSTEMROOT%\SYSTEM32\NTOSKRNL.EXE
    ...
02. An: PROCESS CREATE -> Pid=0x89985140, Ppid=0x8997D140, Range=0x01000000-
    0x01082000, Name=\%SYSTEMROOT%\SYSTEM32\WINLOGON.EXE
    ...
03. An: MAP VIEW -> Context=0x89985140, Range=0x7C800000-0x7C8C0000, 
    Name=\%SYSTEMROOT%\SYSTEM32\NTDLL.DLL
    ...
04. An: MAP VIEW -> Context=0x89985140, Range=0x77E40000-0x77F42000, 
    Name=\%SYSTEMROOT%\SYSTEM32\KERNEL32.DLL 
    ...
05. An: MAP VIEW -> Context=0x89985140, Range=0x71C00000-0x71C17000, 
    Name=\%SYSTEMROOT%\SYSTEM32\WS2_32.DLL
    ...
06. An: MAP VIEW -> Context=0x89985140, Range=0x10000000-0x10052000, 
    Name=\%SYSTEMROOT%\SYSTEM32\XOPPTP.DLL
    ...
07. An: MAP VIEW -> Context=0x89985140, Range=0x00DF0000-0x00E92000, 
    Name=\%SYSTEMROOT%\SYSTEM32\WININET.DLL
    ...
08. An: MAP VIEW -> Context=0x89985140, Range=0x7C8D0000-0x7D0D3000, 
    Name=\%SYSTEMROOT%\SYSTEM32\SHELL32.DLL
    ...
09. An: CONTEXT SWAP -> Pid=0x89985140 (*winlogon.exe*)
    ...
10. BTM: 0x001B:0x000000007C802150 (ntdll.dll)
    ...
11. BTM: 0x0008:0x000000008001345A (ntoskrnl.exe)
    ...
12. BTM: 0x001B:0x0000000071C03562 (ws2_32.dll)
    ...

13. BTM: 0x001B:0x0000000000E17860 (wininet.dll)
    ...
14. BTM: 0x001B:0x000000001000235B (xopptp.dll) (*connect request*)
    ...
15. BTM: 0x001B:0x000000007C8D4358 (shell32.dll) (*executing keylogger*)
    ...
16. An: PROCESS CREATE -> Pid=0x88321D88, Ppid=0x890A3730, Range=0x00400000

-0x0040D000, Name=\%SYSTEMROOT%\SYSTEM32\LOGGERB.EXE
    ...
17. An: MAP VIEW -> Context=0x88321D88, Range=0x77E40000-0x77F42000, 
    Name=\%SYSTEMROOT%\SYSTEM32\KERNEL32.DLL
    ...
18. An: CONTEXT SWAP -> Pid=0x88321D88 (*loggerb.exe*)
    ...
19. An: MAP VIEW -> Context=0x88321D88, Range=0x10000000-0x1000E000, 
    Name=\%SYSTEMROOT%\SYSTEM32\LOGGERB.DLL
    ...
20. BTM: 0x001B:0x0000000077E48910 (kernel32.dll) (*install keylogging*)
    ...
21. An: CONTEXT SWAP -> Pid=0x89985140 (*winlogon.exe*)
    ...
22. BTM: 0x001B:0x00000000100083A4 (xopptp.dll)
    ...
23. BTM: 0x001B:0x0000000077EA8940 (kernel32.dll) (*device io control*)
    ...
24. BTM: 0x0008:0x00000000BAC1D670 (xopptp.sys) (*unload function*)
    ...
25. An: UNLOAD SYSIMAGE -> RANGE=0xBAC1B000-0xBAC20140 (*unload driver*)
    ...
26. BTM: 0x001B:0x0000000077EB1454 (kernel32.dll) (*unload library*)
    ...
27. An: UNMAP VIEW -> Range=0x10000000-0x10052000 (xopptp.dll)
    ...

Figure 5: XTRAC Log for HaxDoor.KI/A-311 Death BackDoor: Revealing Actions of the Attacker such as a Estab-
lishing a Connection to the BackDoor and the Complete Removal of the Malware from the Host

proaches, a technique called VM introspection is em-
ployed, whereby software VMs such as VMWare [33],
Xen [5], UML Linux [12], etc. are extended to de-
liver events to the framework which then acts upon them.
Aftersight [10] employs VMWare to decouple analysis
from normal execution by logging nondeterministic VM
inputs and replaying them on a separate analysis platform
for intrusion detection and bug detection. ReVirt [13]
employs UML Linux for intrusion detection and replay.
It logs deterministic events such as interrupts and system
calls, and is able to replay these events thereby replay-
ing the execution control flow. Flight data recorder [37]
extends this scheme to multiprocessors. Other intrusion
detection tools such as Backtracker [22] and [20] also
work on the same principle and employ ReVirt as their
base. VMIIDS [17] and Psyco-Virt [4] are some more
examples of systems employing VM introspection for
execution control flow logging. Time Traveling Virtual
Machine (TTVM) [23] logs execution control flow and
uses it to detect bugs in a OS Kernel.

Software VM based approaches rely on a host OS for
storing the log. Thus, their TCB is an order of mag-
nitude greater than ours (since a typical OS has lots of
supporting drivers, services and dynamic components).
An attack exploiting a vulnerability in any of the host
OS components can result in the integrity of the log be-
ing compromised. While, the past log can be prevented
from being tampered with [7], nothing prevents the at-
tacker from inserting new entries and even deleting the
log itself. Also, the logging and replay approach can
result in inaccurate execution during replay due to non-
determinism [30]. As an example, ReVirt does not han-
dle instructions that result in non–determinism such as
RDTSC and RDPMC. Furthermore, the software VMs
employed are either too lightwieght to host a commod-
ity OS (e.g., ReVirt uses UMLLinux which cannot run

Windows) or too big (e.g., Xen, Vmware) giving rise to
vulnerabilities within the software VM itself [16].

OS Level Logging: In OS level logging, the host OS
is modified to trigger messages during the operation of
the OS Kernel. Syslogd [31] and Windows Management
Instrumentation [25] provide support for system logging
on Unix–based systems and Windows. Filemon [29] and
Regmon [29] are system utilities which log real-time file
and registry activities. Tools such as Valgrind [26], and
DynamoRIO [9] can run a specified program within an
OS using dynamic binary translation and can be used for
instruction–level execution control flow logging. Tools
such as Strace [35] on the other hand dynamically rewrite
portions of the running binary in order to log the se-
quence of systems calls made by a process.

Approaches based on OS level logging, store the log in
the host OS which cannot guarantee the intergrity of the
log as mentioned previously. Further, the framework it-
self resides within the host OS which makes it easily sus-
ceptible to attacks. As an example, the hooks deployed
by tools such as Filemon can be removed by restoring the
OS system service table to default values.

Debuggers and Specialized Hardware: Software de-
buggers such as WinDbg [24] allow recording of exe-
cution control flow by single–stepping instructions. A
similar capability is provided by hardware debuggers
such as ones manufactured for AMD and Intel proces-
sors by American Arium [3]. Specialized hardware such
as Logic Probes and In-Circuit Emulators (ICE) can be
configured to read processor BTMs from the system bus
as demonstrated by Bosch et.al. [8]. However, these
approaches are designed for manual debugging and are
not suited for real–time logging and online deployment.
CADRE [30] is a cycle accurate deterministic replay
system that can recreate the execution control–flow of
a system accurately. However, it uses a platform that
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is ad-hoc and very different from commodity systems.
Software cycle accurate deterministic simulators such as
PTLSim [38] and AMD SimNow [6] are very slow (typi-
cally 50 to 1000x slowdown) and do not contain adequate
support for commodity hardware making them unsuit-
able for online deployments. Further, they suffer from
the same drawbacks as software VM based approaches
as the simulation is done on a host OS.

8 Conclusion
With the rapid creation of new malware, XTREC of-
fers the useful property to perform forensic analysis a
posteriori. Based on our experimental results we find
that XTREC is viable on current enterprise systems, and
postulate that minor hardware changes could consider-
ably improve performance. XTREC can be used to show
whether a particular set of code has been executed on a
system, or conversely to prove that some code has not ex-
ecuted, a highly desirable property to ensure information
assurance.
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