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ABSTRACT

This paper presents our efforts in developing XMHF, an eX-
tensible and Modular Hypervisor Framework. XMHF takes
a developer-centric approach to hypervisor design and imple-
mentation, and strives to be a comprehensible and flexible
platform for performing hypervisor research and develop-
ment. XMHF encapsulates common hypervisor core func-
tionality in a framework that allows others to build custom
hypervisor-based solutions (called “hypapps”) while freeing
them from a considerable amount of wheel-reinventing that
is often associated with such efforts. We are encouraged by
the end result – a clean, barebones hypervisor framework
with desirable performance characteristics and an architec-
ture amenable to formal analysis.
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1. INTRODUCTION
Recent years have yielded significant research on hypervisor-

based architectures for security [9,15,17,24–26,29,30,32,34,
37,38,40,41,45,46]. A majority of these hypervisors [17,24,
25,29,37,38,40,41,46] are designed and written from scratch
with the primary goal of achieving a low Trusted Comput-
ing Base (TCB) while providing a specific security property.
Other research efforts leverage existing commercial-grade
virtualization solutions (e.g., Xen, Linux KVM, VMware,
or L4), but generally do not require such rich functional-
ity [9, 12,15,19,26,30,32,34,45].
This paper presents our efforts in developing XMHF, an

eXtensible and Modular Hypervisor Framework. XMHF
takes a developer-centric approach to hypervisor design and
implementation, and strives to be a comprehensible and flex-
ible platform for performing hypervisor research and devel-
opment. We are motivated in part by the fact that every
hypervisor-based solution relies on a common hypervisor
core functionality that is inevitable when given a particu-
lar CPU architecture (e.g., x86). XMHF encapsulates this
common functionality in a framework that allows others to
build custom hypervisor-based solutions while freeing them

∗We gratefully acknowledge support from the US Army Re-
search Office contract number W911 NF 10 C 0037, and
from CyLab at Carnegie Mellon University.

from a considerable amount of (low-level, challenging to de-
bug) wheel-reinventing that is often associated with such
efforts.

We have ported a number of hypervisor research efforts
to this new platform, essentially realizing a “version 2.0”
implementation where development continues today. In this
paper, we describe the design and implementation of XMHF,
emphasizing those design decisions which we feel are suitable
for supporting modular development of future “hypervisor
applications” or “hypapps”. We detail several case studies
to substantiate these claims.

XMHF advocates a “rich” single-guest model where the
hypervisor framework supports only a single-guest and al-
lows the guest direct access to all performance-critical sys-
tem devices and device interrupts. The single-guest model
results in a dramatically reduced hypervisor complexity (since
all devices are directly controlled by the OS) and conse-
quently TCB, while at the same time promising near-native
guest performance.

A hypapp relies on XMHF for core platform functionality
while extending the framework to implement a customized
solution. As a small piece of software between the OS and
the hardware, hypapps therefore enjoy a unique advantage
in terms of balance between security and versatility. They
also help reduce security sensitive developers concerns with
respect to other malicious applications with the OS or OS
vulnerabilities.

XMHF currently supports both Intel and AMD commod-
ity x86 hardware virtualized platforms and can run Linux,
Windows XP and Windows 2003 as unmodified guests with
SMP support. XMHF imposes less than 10% overhead in
the common case, and the current implementatation has a
TCB of 6–13K SLoC depending on the extent of framework
features used by a hypapp.

We are encouraged by the end result – a clean, barebones
hypervisor framework with desirable performance character-
istics and an architecture amenable to formal analysis.
Contributions. We design a developer-centric hypervi-
sor framework which supports modular development of fu-
ture “hypervisor applications” or “hypapps”.We implement
XMHF on both Intel and AMD commodity x86 hardware
virtualized platforms. Our framework is capable of running
unmodified legacy SMP capable OSes such as Windows and
Linux. We present a comprehensive performance evaluation
of XMHF and describe our efforts in porting several recent
hypervisor-based research efforts to XMHF to showcase the
framework efficacy.



Figure 1: High level view of XMHF design

2. DESIGN
We design XMHF as a Type-1 (or native, bare metal)

hypervisor that runs directly on the host’s hardware to con-
trol the hardware and to manage guest operating systems.
A guest operating system thus runs on another (deprivi-
leged) level above the hypervisor. Our primary design choice
for a bare-metal hypervisor is for a low-TCB and high per-
formance hypervisor code base. Figure 1 shows the high-
level design of XMHF. The XMHF framework consists of
the XMHF core and supporting libraries that sit directly on
top of the platform hardware. A hypapp extends XMHF
and leverages the basic hypervisor and platform function-
ality provided by the XMHF core while implementing the
desired (security) functionality.

2.1 “Rich” Single-guest Execution Model
We propose a “rich” single-guest execution model where

the hypervisor framework supports only a single-guest and
– following XMHF initialization (§2.2) – allows We note that
the single-guest execution model resonates with a plethora
of recent works [17, 24, 25, 29, 37, 38, 40, 41, 46] that attempt
to provide desired functionality and security properties with-
out depending on a commodity operating system. Note that
the single-guest model allows its guest to be another (more
traditional) hypervisor running multiple guest OSes, as evi-
denced by recent research efforts such as Cloudvisor [46] and
Turtles [9].
The “rich” single-guest model (see Figure 2) has several

advantages over traditional hypervisor approaches:
Dramatically reduced hypervisor complexity and con-
sequently TCB. Since all devices are directly controlled by
the guest, XMHF does not have to deal with per-device id-
iosyncrasies that arise from devices that are not completely
standards-compliant. Further, XMHF does not need to per-
form hardware multiplexing, an inherently complex mecha-
nism that can lead to security issues [16, 23]. This results
in a small and simple hypervisor code base which improves
maintainability and makes it amenable to formal verification
and/or manual audits to rule out the incidence of vulnera-

Figure 2: XMHF Rich Single-guest Execution
Model

bilities. Note that we could attempt to reduce device mul-
tiplexing by employing PCI-passthrough, where a device is
directly assigned to a guest [3]. Unfortunately, the devices
that can be allocated using this scheme depends directly on
the bus hierarchy in a particular system [5]. Further, PCI-
passthrough support is not seamless currently and requires
non-trivial device firmware extraction and patching in some
cases [4].
Narrow attacker interface. With the “rich” single guest
execution model, the hypervisor interacts with the guest via
a deterministic and well defined platform interface. For ex-
ample, current x86 hardware virtualized platforms define
a small deterministic set of intercepts that transfer control
to the hypervisor upon detecting certain guest conditions
(§ 3.3). This greatly reduces the attack surface of XMHF
and the hypapp.
Near-native guest performance. The system interrupt
controllers (IOAPICs) and devices are directly in the control
of the guest. Therefore, all (device) interrupts are configured
and handled by the guest without the intervention of XMHF.
This results in a near-native guest performance (the guest
still has to incur the memory/DMA protection overheads
which are less than 5% in the common case (§ 5.3). This is
in contrast to traditional hypervisors where the hypervisor
virtualizes devices and interposes on all device interrupts.
Note that even with PCI-passthrough, where a device can
be directly assigned to a guest, the interrupts still need to be
handled by the hypervisor resulting in noticable performance
degradation in practice [20].

2.2 Isolation
As XMHF allows (in the common case) the guest to di-

rectly access system devices and handle interrupts, it must
isolate itself from the guest in order to preserve its integrity
– a fundamental hypervisor property. Integrity means that
all changes to hypervisor memory are caused by direct ac-
tion within the intended execution of the hypervisor’s own
instructions (e.g., initialization and inter- cept handlers).
Further, integrity requires that neither hypervisor code nor
data can be directly accessed via Direct Memory Accesses
(DMA) by devices. Consequently, XMHF must ensure that



it starts up in an unmodified fashion and continues to run
without any inadvertent modifications to its code and data.
We assume the adversary can execute arbitrary code within

the guest and may also monitor and manipulate network
traffic to and from the user’s machine. However, we assume
the adversary is remote and cannot perform physical attacks
on the user’s machine.

2.2.1 Launch Integrity

XMHF loads itself during the platform initialization and
boot sequence. For XMHF to startup in an unmodified form
entails trusting the platform initialization and boot sequence
to correctly load and transfer control to XMHF. Unfortu-
nately ensuring this is a challenge on commodity x86 plat-
forms. The traditional x86 BIOS initialization and boot
sequence is plagued by having existed for several decades.
As such, modern security requirements and virtualization
capabilities did not exist when it was first conceived. The
result of this is that there may exist legacy code in a system’s
BIOS, option ROMs and boot-sequence that should not be
trusted, since it was never subjected to rigorous analysis for
security issues†.
XMHF leverages dynamic root of trust (DRT) to startup

in an unmodified fashion. A dynamic root of trust (DRT) is
an execution environment created through a disruptive event
that synchronizes and reinitializes all CPUs in the system
to a known good state. It also disables all interrupt sources,
DMA, and debugging access to the new environment. DRT
support is available on all current commodity x86 CPUs
from Intel and AMD [6,22].
XMHF’s launch process (see Figure 3) consists of an init

module that is loaded via a (untrusted) boot-loader such as
GRUB. The init module then uses appropriate CPU in-
structions to establish a DRT and loads the XMHF secure-

loader in a memory constrained hardware protected envi-
ronment. The XMHF secure-loader in turn initializes the
platform and sets up required protections to run the XMHF
runtime with full access to platform resources.

2.2.2 Runtime Integrity

Once XMHF has started in an unmodified form as de-
scribed previously, it must continue to run without any inad-
vertent modifications to its memory regions (code and data).
As XMHF allows the guest direct access to system devices,
intuitively memory protection from devices and guest code
(running on the CPU) becomes crucial to preserving its in-
tegrity and enforcing isolation.
Devices such as USB, Firewire, Storage and Network de-

vices can directly access physical memory via DMA, po-
tentially bypassing the hypervisor. These devices can be
programmed by an attacker to access any portion of the
physical memory including those belonging to the hypervi-
sor [10]. Malicious firmware on a device can also accomplish
the same goal by replacing legitimate physical memory ad-
dresses passed to it with hypervisor physical memory re-
gions.
XMHF leverages the platform I/O Memory Management

Unit (IOMMU) protect its memory regions from direct ac-
cess by devices. The IOMMU is the only system device

†A closed system where only known firmware is executed
at boot-time, can be subjected to analysis and consequently
trusted. However, most (if not all) x86 systems do not fall
under this category.

Figure 3: XMHF detailed architecture

that can intervene between DMA transactions occurring be-
tween a device and memory. Both AMD and Intel x86 plat-
forms provide an IOMMU as a part of the northbridge. The
IOMMU allows each peripheral device in the system to be
assigned to a set of IO page tables. When an IO device
attempts to access system memory, the IOMMU intercepts
the access and uses the IO page tables associated with that
device to determine whether the access is to be permitted as
well as the actual location in system memory that is to be
accessed. XMHF instantiates IO page tables such that phys-
ical addresses corresponding to the XMHF secure-loader and
XMHF runtime memory regions are marked as inaccessible
to any device.

A guest environment running on top of XMHF can run any
commodity OS and applications. The guest may manipulate
the CPU MMU’s virtual memory data structures or even di-
rectly access system physical memory belonging to the hy-
pervisor. XMHF uses partitions‡ to contain guest code and
data. Partitions in XMHF are essentially bare-bones CPU
hardware backed execution containers which enforce system
memory isolation for the guest or a portion of it.

XMHF creates a primary partition in order to run the
guest operating environment. The primary partition allows
the guest environment to see and access all the system de-
vices including the CPU (and cores) just as it would have
on a native boot. XMHF can also instantiate secondary

‡The term hardware virtual machine is used for such CPU
execution containers in current hardware virtualization par-
lance. However, technically a virtual machine presents to
the guest a virtualized view of the system devices in addi-
tion to enforcing memory isolation, and is a misnomer in our
case.



partitions on demand when requested by a hypapp. These
secondary partitions are capable of running portions of the
guest environment code/data within isolation (Figure 3).
This is useful when a hypapp wishes to implement desired
security properties at a finer-granularity of portions of an un-
trusted application within the operating environment (e.g.,
TrustVisor [25])

2.3 Event-based Runtime Interface
Just like a regular application running inside an operating

system accesses services via a plethora of interfaces (kernel,
windowing, graphics, shell etc.), XMHF and hypapps inter-
act with a guest operating system via an event-based in-
terface during runtime. However, unlike regular application
interfaces, this event-based interface is extremely small with
well-defined CPU populated parameters, thereby greatly re-
ducing the attack surface of XMHF and the hypapp. At the
same time, this interface is versatile enough to realize sev-
eral practical security applications as evidenced by several
recent efforts [9,15,17,24–26,29,30,32,34,37,38,40,41,45,46].
XMHF leverages CPU support for hardware virtualiza-

tion in order to capture and handle events within a guest
operating environment. For example, current x86 hardware
virtualized platforms define a deterministic set of intercepts
that transfer control to the hypervisor upon detecting cer-
tain guest conditions (§ 3.3). Similar capabilities are also
forthcoming in ARM processors [7]. XMHF, during initial-
ization allows a hypapp to configure the set of guest events
that it wishes to intercept and handle. This avoids unnec-
essary guest intercepts at runtime. The XMHF core event-
hub gets control for all intercepted guest events and in turn
invokes the appropriate XMHF/hypapp callback to handle
the event. The XMHF/hypapp callback has the option of in-
jecting the event back into the guest for further processing if
desired. The event-callback mechanism therefore allows hy-
papp’s to easily extend core XMHF functionality to realize
desired functionality in the context of a particular guest.

2.4 Attested Measurements
Remote attestation allows remote parties to verify that

a particular message originated from a particular software
module. This is especially desirable in the context of a hy-
pervisor framework such as XMHF since it forms the highest
privilege system providing capabilities to enforce desired se-
curity policies.
Remotely ascertaining the cryptographic hash of executable

code is commonly achieved via an attestation protocol. Such
protocols generate a cryptographically signed or otherwise
authenticated message containing one or more digests of the
target executable code. We distinguish two facets of an at-
testation protocol: (1) accumulating measurements on the
target system of interest, and (2) verifying the attested mea-
surements on a trusted verifier system.
XMHF relies on a Trusted Platform Module (TPM) for

accumulating integrity measurements. TPMs contain Plat-
form Configuration Registers (PCRs), which are registers
that store an append-only hash chain. Using dynamic root of
trust as part of the launch process (§2.2.1) automatically ex-
tends the hash of the code being launched into a PCR. This
PCR can be extended further as components are loaded and
executed. XMHF init loads the XMHF secure-loader,
which in turn measures and loads the XMHF runtime.
A challenge with this approach is that monitoring a PCR

value for changes does not reveal any insight into the reason
for a change. To be meaningful, remote attestations require
a TCB that is relatively small and modular. It is then eas-
ier to keep track of a list of known-good components, and
the hypervisor is presumed to be less susceptible to runtime
compromise (due to its lower complexity / small size). This
is important because the attestation is a load-time property
(i.e., it only tells the verifier what code was loaded). Attes-
tation cannot detect if a runtime exploit overwrites loaded
code with unauthorized code.

XMHF addresses this problem by having a modular ap-
proach to its design (Figure 3). Every component of the core
and supporting libraries can be essentially considered as ob-
jects exposing a set of interfaces and dealing with object
data. Every XMHF component and the hypapp have the
following memory layout: code, init-data, uninitialized-data
and stack (if applicable). During load, the code and init-
data are hashed and extended into a PCR for attestation
purposes, while the uninitialized-data and stack are zeroed
out to begin with.

3. IMPLEMENTATION
We now describe the XMHF implementation. The frame-

work implementation supports both Intel and AMD com-
modity x86 hardware virtualized platforms and is capable
of running unmodified legacy SMP capable Windows (2003
and XP) and Linux.

3.1 “Rich” Single Guest Execution Model

3.1.1 Multicore guest bringup

Summary. A native operating system, on the x86 platform
uses the INIT and Startup Inter-Processor Interrupt (SIPI)
in order to bring up multiple cores [6, 21]. The INIT-SIPI-
SIPI sequence is delivered to a CPU core via the CPU Lo-
cal Advanced Programmable Interrupt Controller (LAPIC).
However when a guest OS runs on top of XMHF, the frame-
work must ensure that it maintains required protections dur-
ing runtime while allowing the guest OS to access the physi-
cal cores directly. Normal hypervisors such as Xen virtualize
the CPU LAPIC in order to handle SMP guests. This re-
sults in considerable code complexity as a result of handling
issues such as concurrency and interrupt ordering. In con-
trast, XMHF allows the guest direct access to the LAPIC.
Therefore, ensuring that the framework is still able to retain
control and maintain isolation during runtime is a challenge.
Details. On a single core CPU, XMHF, during initializa-
tion switches the Boot Strap Processor (BSP) core to guest-
mode before booting the guest OS. For a multi core CPU
XMHF, during initialization activates the remaining cores
in the system and switches them to host-mode which then
idle within XMHF. When the guest initiates the INIT and
SIPI sequence in order to bring up multiple cores, XMHF in-
tercepts this sequence and switches the cores to guest-mode
before handing back execution to the guest.

To support both Intel and AMD x86 platforms, XMHF
uses a unified scheme to intercept guest multi-core activa-
tion. The LAPIC Interrupt Control Register (ICR) is used
to deliver the INIT-SIPI-SIPI sequence to a target core. On
both Intel and AMD hardware-virtualized platforms, the
LAPIC registers are accessed via memory-mapped I/O. The
memory-mapped I/O region encompasses a single physical
memory page. XMHF leverages hardware page tables to



to trap and intercept any changes to the LAPIC memory-
mapped I/O page by the guest.
Subsequently, any writes to the LAPIC ICR by the guest

causes the hardware to trigger an intercept. The XMHF core
handles this intercept, disables guest interrupts and sets the
guest trap-flag and resumes the guest. This causes the hard-
ware to immediately trigger a single-step intercept, which is
then handled by the XMHF core to process the instruction
that caused the write to the LAPIC ICR. If a INIT com-
mand was being written to the ICR, XMHF simply voids
the instruction. When the SIPI command is written to the
ICR, XMHF voids the instruction and instead runs the tar-
get guest code on that core in guest-mode.

3.1.2 Core quiescing

Summary. In a multi-core system, the other cores need
to be in a halted state when the XMHF core or hypapp is
modifying critical data structures such as the nested page
tables as this affects the way in which all cores perceive
memory.
Detail. XMHF uses a mechanism called core quiescing in
order to stall all cores in a multi-core system within a hy-
papp. XMHF leverages the Non-Maskable Interrupt (NMI)
for core quiescing as described below. When a hypapp on
a specific core C wants to perform quiescing it invokes the
XMHF core interface which sends a NMI to all cores other
than C. Since the NMI cannot be masked, this causes all
these other cores to either receive a NMI intercept (if operat-
ing in guest mode) or a NMI exception (if operating in host
mode). The NMI handler is invoked in both cases which is
an idle spin-lock loop, in effect, stalling the core. Once the
hypapp is done performing the required task on C, it signals
the spin-lock which causes the other cores to resume.

3.1.3 Prevent access to critical system devices

Summary. Critical system devices such as the IOMMU
and the system memory controller, like any other device
expose their interface through either legacy IO or memory-
mapped IO. For example, Intel x86 platforms expose the
IOMMU as a DMA device through ACPI while AMD x86
platforms expose the DMA protection unit (DEV) as a PCI
device. The system memory controller is typically exposed
as a PCI device as well. With the “rich” single-guest model,
the guest can perform direct I/O to these devices, effectively
compromising the memory and DMA protections. Normal
hypervisors such as Xen use a virtual BIOS to present to the
guest a different platform device configuration and I/O ar-
eas and can easily mask platform critical devices from guest
access. However, since XMHF lets the guest see and interact
with the real system BIOS, it must employ a different mech-
anism to prevent access to platform critical system devices.
Detail. XMHF marks the ACPI and PCI configuration
space of critical system devices (IOMMU, DEV and sys-
tem memory controller for example) as not-present using
the hardware page tables. Thus, the guest never gets to see
these devices in the first place. It also makes the memory
mapped I/O space of these devices inaccessible and sets in-
tercepts on the legacy I/O space to prevent a guest from
maliciously accessing these system devices.

3.1.4 Guest memory reporting

Summary. A normal guest operating system during its
bootup uses the BIOS to determine the amount of physical

memory in the system. More specifically the INT 15h E820

interrupt interface is the standard way of obtaining the sys-
tem physical memory map from the BIOS. However, with
a hypervisor loaded, there must be a mechanism to report
a reduced memory map devoid of the hypervisor memory
regions to the guest. If not, the guest at some point during
its initialization will end up accessing the hypervisor mem-
ory areas. As described previously, a traditional hypervisor
solution maps a virtual BIOS for a virtual machine which
reports a reduced system memory map. However, this mech-
anism cannot be used for the“rich”single-guest model where
the guest gets to see and interact with the real system BIOS.
Detail. XMHF leverages the hardware page tables for the
purpose of reporting a custom system memory map to the
guest OS. During initialization XMHF locates the INT 15h

interrupt handler address by scanning the real-mode Inter-
rupt Vector Table (IVT). It then replaces the physical page
entry corresponding to the interrupt handler in the nested
page table to point to a buffer within XMHF. This buffer is
an exact copy of the original interrupt handler page with the
starting of the INT 15h handler replaced by a hypercall in-
struction. When the guest OS invokes the INT 15h service
during system bootup, the hypercall instruction transfers
control to XMHF which then checks to see if is it a memory
map request. If so, it presents a custom memory map devoid
of XMHF memory regions and resumes the guest. If not, it
injects the interrupt back to the guest for further processing.

3.2 Isolation

3.2.1 Launch Integrity

XMHF’s init module is responsible for initiating a dy-
namic root of trust (DRT) in order to bootstrap the XMHF
secure-loader. DRT implementation has significant re-
quirements on each of AMD and Intel x86 hardware plat-
forms. We first briefly outline these requirements before
proceeding to describe the XMHF secure-loader imple-
mentation. AMD calls the launched environment an Secure
Loader Block (SLB). Intel calls the launched environment
a Measured Launched Environment (MLE). For brevity we
will use the term secure-loader.
XMHF init. On AMD platforms, XMHF init uses the
SKINIT CPU instruction in order to establish a DRT and
load the XMHF secure-loader. As per SKINIT require-
ments, XMHF init clears microcode on the BSP and all
APs and ensures that the XMHF secure-loader is loaded
on a 64K-aligned physical address.

Intel platforms support DRT with their Trusted eXecution
Technology (TXT). As part of TXT several MSRs are added
to the CPU which are used to setup required data structures
for DRT initialization and are also used for status and error
reporting. TXT also requires a chipset specific Authenti-
cated Code Module (also known as SINIT AC module) to
establish a DRT. XMHF init copies the appropriate SINIT
AC module to the physical address specified by the TXT
MSRs. The XMHF init module then constructs page ta-
bles that map the XMHF secure-loader so that the SINIT
AC module can address it properly. These page tables are
part of the XMHF secure-loader memory§. The XMHF
init then sets up the CPU Memory Type Range Regis-
ters (MTRRs) in order to disable memory caching for the

§In practice 3 4K pages should suffice. These are PAE-
formatted page tables.



SINIT AC module to run. Finally, XMHF init issues the
GETSEC[SENTER] CPU instruction to establish a DRT
and transfer control to the XMHF secure-loader.
XMHF secure-loader. Both Intel and AMD differ in
their SLB/MLE size constraints, CPU state when secure-

loader gets control and layout of the secure-loader. AMD
SLBs are limited to 64K in size while Intel MLEs can be
larger. Intel and AMD SLB/MLEs both start in 32-bit flat
protected mode, but have different CPU states. On AMD,
only CS and SS are valid. EAX contains the SL base address
and EDX contains the CPU information. ESP is initialized
to top of 64K. On Intel, CS and DS are valid and SS is invalid
and uninitialized.¶ Finally AMD SLBs and Intel MLEs have
different header requirements.
XMHF uses a single 64KB secure-loader for both Intel

and AMD platforms. The XMHF secure-loader memory
image starts with 3 empty pages, except for the first 4 bytes.
These are initialized to contain the SLB header for an AMD
system. The entry point points beyond these three pages
to the true entry point on the fourth page. On an Intel
system these three pages will be overwritten with the MLE
page tables by XMHF init as described previously. The
MLE header is written into the MLE at the beginning of
the fourth page, and serves no purpose when the secure-

loader executes on an AMD platform. This scheme enables
the XMHF secure-loader to meet both AMD and Intel
DRT requirements with a single build process.
Because the XMHF secure-loader can be loaded any-

where in memory depending on the system memory map,
the XMHF secure-loader needs to obtain its load address
during runtime in order to setup required code, data and
stack segments. While AMD platforms provide the base ad-
dress in the EAX register, not all Intel platforms provide
this information ‖. XMHF secure-loader therfore uses a
cross-processor solution to read and align the instruction
pointer register to discover the base address. More specifi-
cally it uses the sequence: call 1f; 1: popl %eax; andl

$0xffff0000, %eax which returns the runtime base address
of the secure-loader in the EAX register.
Early DMA Protection. The XMHF secure-loader is
loaded via a DRT operation which automatically records
a cryptographic hash of the secure-loader in the plat-
form TPM. The secure-loader in turn measures the XMHF
runtime (including the core and the hypapp) and extends
this measurement into the platform TPM before transfer-
ring control to the runtime. While DRT protects the XMHF
secure-loadermemory from the entire platform, the XMHF
runtime is still vulnerable to DMA attacks from possibly
malicious platform peripherals; A malicious peripheral can
overwrite the runtime memory after the runtime is measured
but before control is transferred to the runtime. To prevent
such attacks, the XMHF secure-loader employs what we
term “early” DMA protection as described below.
On the Intel platforms, the XMHF secure-loader em-

ploys the platform IOMMU hardware in order to setup DMA
protection over the XMHF runtime code before measuring
the runtime. The IOMMU hardware includes a set of pro-

¶In practice, we have observed that SS still points inside the
SINIT code region. Still, it is prudent not to depend upon
this behavior.
‖If GETSEC[CAPABILITIES] indicates that ECX will con-
tain the MLE base address pointer upon entry into the MLE,
we can use ECX as the base address on Intel systems

tected memory registers (PLMBASE_REG, PLMLIMIT_REG and
PMEN_REG) which can be programmed to contain the base
address and limit of physical memory and turn on DMA pro-
tection for the specified range. XMHF secure-loader pro-
grams these registers to include the XMHF secure-loader

and the XMHF runtime.
On AMD platforms, the XMHF secure-loader employs

the Device Exclusion Vector (DEV) to setup early DMA pro-
tection. The DEV is a bitmap structure with each bit corre-
sponding to a physical memory page in the system. If a bit
is 1 then DMA is disallowed, otherwise DMA is allowed for
the corresponding memory page. However, since the XMHF
secure-loader and XMHF runtime are loaded at the top
of system memory below 4GB, this presents an interesting
problem: To be able to set DMA protections on the runtime
we typically require an array of size > 64KB. However, the
size of the XMHF secure-loader is limited to 64KB in total
(code and data). XMHF secure-loader circumvents this
problem by using a protected 8K buffer (corresponding to
a maximum 128MB runtime size) within its memory image.
XMHF secure-loader then computes the DEV bitmap base
address depending on the physical base address of the pro-
tected buffer and the physical base address of the memory
region where the secure-loader was loaded. This aligns
the 8K protected buffer to cover the secure-loader and
runtime memory range upto a maximum of 128MB. XMHF
secure-loader then sets the entire 8K buffer bits to 1’s
thereby DMA protecting the runtime. Note that we don’t
care about DMA protecting other parts of the DEV bitmap
except for our protected buffer which is already DMA pro-
tected since the secure-loader was started using a DRT
operation.

3.2.2 Runtime Integrity

Memory Isolation. XMHF uses two-level Hardware Page
Tables (HPT)∗∗ for efficient memory isolation. In particu-
lar, the hardware ensures that all memory accesses by guest
instructions go via a two-level translation in the presence of
the HPT. First, the virtual address supplied by the guest is
translated to a guest physical addresses using guest paging
structures. Next, the guest physical addresses are translated
into the actual system physical addresses using the permis-
sions specified within the HPT. If the access requested by
the guest violates the permissions stored in the HPT, the
hardware triggers an intercept that can be handled by the
XMHF core and/or the hypapp.

In XMHF, both primary (where the guest OS runs) and
secondary partitions (recall § 2.2.2) are tied to a given HPT
that enforces memory isolation. The partitions can all share
the same HPT (for uniform view of memory and protections)
or can have seperate HPTs (cases where the secondary par-
tition might want to run only with a subset of the primary
partition address space).
Runtime DMA Protection. XMHF secure-loader pro-
vides early DMA protection to the XMHF runtime. How-
ever, this protection is very coarse grained (over a single
contiguous range). To provide hypapps with a more flexi-
ble and fine-grained DMA protection capability, the XMHF
runtime reinitializes the DMA protection upon getting con-
trol. We now describe how fine-grained DMA protection is
achieved on both AMD and Intel x86 platforms.

∗∗Called Nested Page Tables on AMD and Extended Page
Table (EPT) on Intel Platforms respectively



Event-class Callback Prototype Callback handled by

CPU Control register access xmhf_hypappcb_handleCRaccess(vcpu, [CRparams...]) XMHF core and hypapp
CPU Debug register access xmhf_hypappcb_handleDRaccess(vcpu, [DRparams...]) XMHF hypapp
CPU MSR access xmhf_hypappcb_handleMSRaccess(vcpu, [MSRparams...]) XMHF hypapp
CPU Exceptions xmhf_hypappcb_handleEXCP(vcpu, [EXCPparams...]) XMHF hypapp
Non-maskable Interrupt (NMI) xmhf_hypappcb_handleNMI(vcpu, [NMIparams...]) XMHF core
INIT/Shutdown xmhf_hypappcb_handleINIT(vcpu, [INITparams...]) XMHF core and hypapp
CPU Descriptor Table access xmhf_hypappcb_handleXTRaccess(vcpu, [XTRparams...]) XMHF hypapp
CPU Instructions xmhf_hypappcb_handleINSN(vcpu, [INSNparams...]) XMHF core and hypapp
Hypercall xmhf_hypappcb_handleHYPC(vcpu, [HYPCparams...]) XMHF hypapp
Legacy I/O access xmhf_hypappcb_handleIOaccess(vcpu, [IOparams...]) XMHF core and hypapp
CPU Task Switch xmhf_hypappcb_handleTASK(vcpu, [TASKparams...]) XMHF hypapp
CPU Nested Page Fault xmhf_hypappcb_handleNPF(vcpu, [NPFparams...]) XMHF core and hypapp

Figure 4: XMHF uses an event-callback approach to allow the hypapp to interact with the guest. A hypapp
can configure the primary and/or the secondary partitions to intercept required guest events choosing from
the broad event classes on both AMD and Intel x86 platforms. For each event class, a hypapp callback is
invoked in the corresponding CPU core context with associated parameters.

On AMD platforms, XMHF relies on the DEV for fine-
grained DMA protection. As discussed previously, DEV’s
bitmap structure allows DMA protection to be set at a page
granularity. On Intel platforms, XMHF uses the IOMMU
page tables in order to provide fine-grained page-level DMA
protection. The IOMMU has a master table called the Root-
Entry-Table (RET) which is 4KB. Each 128-bit RET entry
essentially corresponds to a PCI bus number (256 in total).
Each RET entry points to a Context Entry Table (CET)
which is 4KB in size. Each 128-bit CET entry accounts
for 32 devices with 8 functions per device as per the PCI
specification. Each CET entry points to a regular PAE-page
table structure which contains mappings and protections for
the DMA address space as seen by the device. Since XMHF
uses the “rich” single-guest model, all CET entries point to
a single PAE-page table structure that controls the DMA
protections for all devices in the system.

3.3 Event-based handling
As mentioned in §2.3 XMHF uses an event-callback ap-

proach to allow the hypapp to interact with the guest and
provide required capabilities. A hypapp can configure the
primary and/or the secondary partitions to intercept re-
quired guest events choosing from the broad event classes
on both AMD and Intel x86 platforms as shown in Figure 4.
For each intercepted class of event the XMHF event-hub

component invokes hypapp callback with the associated pa-
rameters in the context of the physical CPU core on which
the intercept was triggered. For example, on a nested page
fault, the hypapp gets the faulting virtual address, physical
address and the error code associated with the fault. Note
that the XMHF event-hub hides sub-architecture (AMD vs
Intel) specific details and presents the hyperapp with a com-
mon architectural (x86) state. The hypapp callback is of
course free to include sub-architecture specific handling as
needed. The hypapp callback can choose to handle the event
and/or inject it back to the guest for further processing. Also
note from the figure that some events are also processed by
the core directly, e.g., to handle core-quiescing (NMI inter-
cept), shutdown (INIT/shutdown) and SMP guest bringup
(INIT, DB exception and nested page fault intercept).

3.4 Attested Measurements

We first summarize the memory layout of the XMHF
secure-loader and the XMHF runtime. We then describe
how hashes of various components are computed during the
build process. Finally we describe how these hashes are then
used to attest the launch of XMHF and the hypapp to a local
or remote verifier.

The memory layout of the XMHF runtime components
consist of the code, init-data, uninit-data and stack as de-
scribed previously in §2.4. The XMHF secure-loader con-
tains an extra region called .sl_untrusted_params which
contains the untrusted input data for the secure-loader

that is passed by XMHF init. This untrusted data is a
secure-loader parameter block which contains boot time
parameters that are used by the XMHF core for platform
initialization and configuration information that may be hy-
papp specific. The XMHF secure-loader is responsible for
validating all input data in the .sl_untrusted_params re-
gion. It is not measured by default, though a particular
hypapp may measure anything it likes.

During the hypapp build process, the XMHF runtime
components and the XMHF secure-loader are built and
the expected (“golden”) hash itself is computed from the
XMHF secure-loader and runtime binaries using a utility
such as sha1sum. This“golden”hash can be used to compare
the result of a platform attestation to convince a local or re-
mote verifier that XMHF and the hypapp executed on the
platform. This process is further described in detail below.

The XMHF secure-loader is measured by the CPU dur-
ing creation of the DRT (i.e., SKINIT on AMD or GET-
SEC[SENTER] on Intel). The first 64K of the secure loader
are measured implicitly during DRTM establishment and
stored in TPM PCRs 17 or 18 on AMD and Intel respec-
tively. Note that the expected measurement of the secure-

loader will be different depending on whether it was was
launched on an Intel CPU or an AMD CPU due to Intel’s
requirement for an SINIT module and the differences in the
secure-loader header as described previously. The secure-
loader in turn hashes the XMHF runtime and extends its
measurement into PCR 17 (or 18). Thus, PCR 17 (or 18)
will take on the value:
H(H(0x00||H(secure-loader))||H(runtime)). The prop-
erties of the hash function, TPM, chipset, and CPU guar-
antee that no other operation can cause PCR 17 (or 18)



to take on this value. Thus, an attestation of the value of
PCR 17 (or 18) will convince the verifier that XMHF and
the intended hypapp was launched on the target platform.

3.4.1 TPM sharing

XMHF leverages the TPM for platform attestation. How-
ever, XMHF also lets the guest environment see the physical
TPM and communicate with it directly. Thus, XMHF has
to multiplex the TPM in a way so that both the guest and
XMHF and/or the hypapp can access the TPM function-
ality efficiently and without disruption. XMHF leverages
TPM localities for this purpose [36].
The TPM definition provides for localities or indications

of specific platform processes. The TPM PC Specific Spec-
ification [35] defines five localities 0 through 4. A reserved
set of page-aligned memory addresses correlates with the lo-
calities. Locality 4 is used by the hardware DRT mechanism
and allows the TPM to respond appropriately to hardware
DRT requests (i.e, SKINIT and GETSEC[SENTER]) for
measurement and resetting of PCR. Locality 3 is provided
for (optional) auxillary components that may or may not be
part of the hardware DRT process. XMHF reserves locality
2 for the hypapp and also uses it to store the secure-loader
and runtime measurements. XMHF reserves localities 0 and
1 for use by the guest. Futher, XMHF also masks locality
2 from the view of the guest by using nested page tables
to mark the corresponding locality 2 memory page as not-
present. This restricts the guest to use only TPM locality 0
and 1 for its desired purpose.

4. DEVELOPER’S PERSPECTIVE
In this section, we summarize the process of writing, build-

ing, deploying, and debugging a hypapp from the perspective
of a hypapp developer.
Writing a hypapp . We have developed XMHF primarily
in C, with a small portion of the core functionality written
in assembly. Every hypapp contains a hypapp_main func-
tion which gets control in the context of each physical CPU
core when XMHF initializes. This allows the hypapp to per-
form any one-time state initialization before the guest en-
vironment is loaded. During guest runtime, in response to
an intercepted event the appropriate hypapp callback (see
Figure 4) is invoked by the XMHF core. When the guest
finally shuts down, the hypapp shutdown callback gets con-
trol, which can perform any required cleanup.
Building a hypapp . To convert a hypapp into a final
binary, we link it against the XMHF core component library
(representing XMHF core functionality). The build process
automatically generates the init binary and a combined
binary image of the secure-loader, the XMHF core and
runtime, and the hypapp.
Regular application developers depend on a variety of OS

kernel and supporting libraries. There is no reason this
should be any different in the case of a hypapp developer,
except that it is desirable to modularize the libraries fur-
ther than is traditionally done to help minimize the library
interface and the amount of code included in the hypervi-
sor’s TCB. We have developed several small libraries in the
course of applying XMHF to develop hypapps described in
§5.2. The following paragraphs provide a brief description
of these libraries.
XMHF core: The XMHF core provides the minimal func-

tionality needed to support hypapps. In brief, the XMHF

core contains logic to invoke the hypapp initialization and
shutdown routines in response to a platform initialization se-
quence and guest shutdown. The XMHF core also provides
interfaces for core quiescing and resumption in case of SMP
guests. Finally, the XMHF core invokes various hypapp call-
backs (if any are defined) in response to various guest events
allowing the hypapp to implement desired functionality in
the context of the guest.

libxmhfc: We have implemented a tiny version of a C9x
compatible C runtime library for use by the XMHF core and
hypapps. This includes basic string (strncpy, etc.), memory
(memcpy, memmove, etc.) and standard I/O (printf, etc.)
functionality.

libxmhfcrypto: We have developed a small library of cryp-
tographic functions. Supported operations include RSA key
generation, RSA encryp- tion and decryption, SHA-1, HMAC
and MD5.

libtpm: The TPM library allows the XMHF core and hy-
papps to perform useful TPM operations. Currently sup-
ported operations include GetCapability, PCR Read, PCR
Extend, GetRandom, NV Read, and NV Write.

libxmhfutil: Optional general utility functions such as hard-
ware page table abstractions for masking AMD NPT and
Intel EPT differences and for handling various guest paging
modes (such as non-PAE and PAE), and command line pars-
ing functions to parse any boot time options that a hypapp
may wish to process.
Deploying a hypapp . XMHF currently loads during sys-
tem startup via a boot-loader such as GRUB. Note that the
Intel platforms require an addition SINIT AC module to be
passed via the boot-loader for DRT establishment (§ 3.2.1).
Debugging a hypapp . Debugging is an important as-
pect of normal application development. More so in the case
of a hypapp which is executing with hypervisor privileges
and does not have access to regular interactive debugging
tools. Many development issues that can be easily identi-
fied in a userspace application tend to be harder to pinpoint
within a hypervisor simply because of a lack of suitable de-
bugging interface. XMHF currently provides hypapp con-
sole support via serial I/O. This can be currently leveraged
to trace/debug hypapp execution during runtime in a non-
disruptive manner.

5. EVALUATION
We present the TCB size of XMHF’s current implementa-

tion and describe our efforts in porting several recent hypervisor-
based research efforts as hypapps running on XMHF. We
then present the performance impact on a legacy guest op-
erating system running on XMHF and evaluate the perfor-
mance overhead that XMHF imposes on a hypapp. Fi-
nally, we compare XMHF’s performance with the popular
open-source Xen hypervisor. These results explain the basic
hardware virtualization overhead intrinsic to the design of
XMHF.

5.1 Trusted Computing Base (TCB)
Figure 5 shows XMHF’s TCB. The framework TCB can

be split into XMHF core and the supporting libraries (libxmhfc,
libxmhfcrypto, libxmhfutil and libtpm). From the hy-
papp’s perspective, the minimum TCB exposed by XMHF is
6683 SLoC. This consists of the entire XMHF core, libxmhfc
and a couple of functions from libtpm (TPM_extend) and
libxmhfcrypto (sha1). The full TCB for XMHF is 13555



Component ASM C .h Full
TCB

Min.
TCB

XMHF core 717 5036 3987 5753 5753
libxmhfc 0 639 1349 639 639
libxmhfcrypto 0 2382 835 2382 218
libxmhfutil 0 3837 913 3837 0
libtpm 0 944 382 944 73
Total 13555 6683

Figure 5: XMHF’s Trusted Computing Base in
Source Lines of Code (SLoC)

SLoC including every function in all supporting libraries.

5.2 hypapp Case Studies
We demonstrate the utility of XMHF in the context of

porting several recent research efforts in the hypervisor space
to XMHF.We choose TrustVisor [25], Lockdown [37], XTRec [38],
SecVisor [29] and HyperDbg [17] as our candidate hypapps
due to the availability of their sources. Figure 6 shows the
SLoC metrics and platform support for each hypapp before
and after the port to XMHF. Note that the SecVisor, XTRec
and HyperDbg ports are still work in progress. We derived
the SLoC metrics for these by manual inspection of their
existing sources and distinguishing between the hypervisor
core and application specific logic. As seen, the XMHF core
and support libraries form over 60% of the hypapp’s TCB
on average. This supports our hypothesis that these hyper-
visors share a common code base that is re-used or engi-
neered from scratch with every new application. Also, using
XMHF endows the hypapps with both Intel and AMD x86
SMP platform support for free.

5.3 Performance Measurements
We measure XMHF’s runtime performance using two met-

rics: (a) guest overhead imposed solely by the framework
(i.e., without a specific hypapp), and (b) base overhead im-
posed by XMHF for any given hypapp.
Our experimental platform is a HP Elitebook 8540p with

a Quad-Core Intel Core i7 running at 3 GHz, 4 GB RAM,
320GB SATA HDD and an an Intel e1000 ethernet con-
troller. We use Ubuntu 12.04 LTS as our guest operating
system running the Linux kernel v3.2.2. For network bench-
marks, we connect another machine via a 1 Gbps Ethernet
crossover link and run the 8540p as a server. We use XMHF
with both 4K and 2MB hardware page table (HPT) map-
pings for measurement purposes.

5.3.1 Guest Performance

XMHF only receives control as a result of a hypercall or
guest event (recall § 2.3). Thus, when well-behaved legacy
guest runs, the performance overhead is exclusively the re-
sult of the hardware virtualization mechanisms, particularly
the hardware nested paging.
OS Microbenchmarks. We use the lmbench suite to mea-
sure the overhead of different OS operations when running
on top of XMHF. Figure 7 shows the results of 8 impor-
tant operations in our experiments: null systemcall, fork,
exec, ctxsw (context switch among 16 processes, each 64
KB in size), mmap, socket (local communication by socket),
mem read (memory read bandwidth) and mem write (mem-
ory write bandwidth). We compare the native system and

Native XMHF-4K XMHF-2M
Latency in micro-seconds (smaller is better)

null syscall 0.05 0.05 0.05
fork 263 458 317
exec 672 1357 937
ctxsw 31.8 38.1 39
mmap 4672 14200 4868
socket 21.1 28.8 23.6

Bandwidth in MB/sec (bigger is better)
mem read 5187 5170 5256
mem write 5433 5344 5440

Figure 7: XMHF’s lmbench OS microbenchmarks

XMHF (with both 4K and 2MB hardware page table con-
figurations). Most of the benchmarks run with acceptable
overheads. However, fork, exec and mmap run with compar-
atively higher overheads. This is due to the fact that those
operations stress the system’s MMU and TLB functional-
ity – components which are highly sensitive to the hardware
performance of nested page tables. Also, in general, the
overhead is larger for a 4K HPT configuration when com-
pared to a 2MB HPT configuration. This is due to fewer
TLB mappings in the latter case leading to better TLB uti-
lization. We note that these overheads are likely to decrease
on future platforms as hardware virtualization support ma-
tures.
Application Benchmarks. We execute both compute-
bound and I/O-bound applications with XMHF. For compute-
bound applications, we use the SPECint 2006 suite. For
I/O-bound applications, we use the iozone (disk read and
write) and compilebench (project compilation) benchmarks
from the open-source phoronix-test-suite††, , and unmodi-
fied Apache web server performance.

We configure iozone with 4K block size and 2GB file size
and perform the disk read and write benchmarks. We choose
the compile benchmark from compilebench. We run the
Apache web server on the system running XMHF, and use
the Apache Benchmark (ab) included in the Apache distri-
bution to perform 200,000 transactions with 20 concurrent
connections.

Our results are presented in Figure 8. Most of the SPEC
benchmarks show less than 3% performance overhead. How-
ever, there are four benchmarks with over 10%, and two
more with 20% and 55% overhead. We attribute this high
overhead to paging operations performed with the current
HPT, and expect that performance will improve as HPT
hardware matures. For I/O application benchmarks, read
access to very large files and network incurs the highest over-
head (40% and 25% respectively). The rest of the bench-
marks show less than 10% overhead. We also expect this
overhead to diminish with newer HPT hardware. In gen-
eral, for both compute and I/O benchmarks, XMHF with
2MB HPT configuration performs better than XMHF with
4KB HPT configuration.

5.3.2 Performance of hypapps

A hypapp built on top of XMHF incurs two basic over-
heads during execution: (a) each time the hypapp is invoked
via intercepted guest events (including a hypercall), and (b)
each time the hypapp quiesces cores in a multi-core system

††http://phoronix.com



Original On XMHF
hypapp SLoC Arch. Support SMP

Support
XMHF
SLoC

hypapp
SLoC

Total
SLoC

% XMHF
SLoC

Arch. Support SMP
Support

TrustVisor 6481 x86 AMD No 10365 4049 14414 72% x86 AMD, Intel Yes
Lockdown 10KLOC x86 AMD No 6683 8416 15099 44% x86 AMD, Intel Yes
XTRec 2195 x86 AMD No 6683 1506 8189 82% x86 AMD, Intel Yes
SecVisor 1760 x86 AMD No 6683 1289 7972 84% x86 AMD, Intel Yes
HyperDbg 18967 x86 Intel No 6683 17190 23873 28% x86 AMD, Intel Yes

Figure 6: Porting status of several hypervisor-based research efforts as XMHF hypapps

Figure 8: XMHF Application Benchmarks

Event Trigger Core Quiescing

XMHF (4K) 10.12 13.58
XMHF (2M) 10.00 14.34

Figure 9: XMHF hypapp overhead microbench-
marks (in micro-seconds). Avg. of 100 runs with
negligible variance.

in order to perform hardware page table (HPT) updates.
Each time the hypapp is invoked, the CPU must switch

from guest mode to host mode, which includes saving the
current guest environment state and loading the host envi-
ronment state. After the hypapp finishes its task, the CPU
will switch back to the guest by performing the reverse en-
vironment saving and loading. Thus, there is a performance
impact from cache and TLB activity. We measure this over-
head by invoking a simple hypercall within the guest and
measuring the round-trip time. As described in § 3.1.2,
when a hypapp is modifying HPTs in a multi-core system,
it must quiesce the other cores before the modification and
then release them once the operation has been performed.
As XMHF uses the NMI for this purpose, it results in a
measurable performance overhead. We measure the quiesce
overhead by using a simple hypapp that quiesces the cores,
performs a nop and releases them in response to a guest hy-
percall event. We use a guest application that invokes the
hypercall and measure the rount-trip time.
Figure 9 shows the hypapp overheads on XMHF for both

4K and 2MB HPT configurations. As seen both the event
trigger and quiescing overheads are minimal (10-13 microsec-
onds). Also, these overheads seem independent of the HPT
configuration employed.

Figure 10: XMHF Performance Comparison with
Xen

5.4 Performance Comparison
We now compare XMHF’s performance with the popular

Xen hypervisor. We use the latest version of Xen (v 4.1.2
as of this writing) with Ubuntu 12.04 LTS (kernel 3.2.2)
for comparison purposes. We use three hardware virtual
machine (HVM) configurations for domU, that are identi-
cal in memory and CPU configuration to the native system:
HVM domU (xen-domU-hvm), HVM domU with paravir-
tualized drivers (xen-domU-pvhvm) and HVM domU with
pci-passthrough (xen-domU-passthru). We also use dom0
(xen-dom0) as a candidate for performance evaluation. For
compute bound applications we use the SPECint suite. For
I/O-bound applications we use iozone(read and write), com-
pilebench and apache with same parameters as described



previously in § 5.3.1.
Figure 10 shows our performance comparison results. For

compute-bound applications XMHF and Xen have similar
overheads (around 10% on average) with the 2MB XMHF
HPT configuration performing slightly better. For disk-I/O
benchmarks, XMHF, xen-dom0 and xen-domU-pvhvm have
the lowest overheads (ranging from 3-20%). Both XMHF
and xen have higher overheads on the disk read benchmark
when compared to other disk benchmarks. For network-
I/O benchmark, XMHF has the lowest overhead (20-30%).
xen-dom0 and xen-domU-passthru incur a 45% and 60%
overhead respectively, while xen-domU-hvm and xen-domU-
pvhvm have more than 85% overhead.

6. DISCUSSION
We now discuss additional issues, including opportunities

for formal verification of the XMHF framework.

6.1 Formal Verification
Datta et al. [14] show that support for dynamic root of

trust is a viable means for building a system with code and
execution integrity. We plan to build on the results of Datta
et al. to prove the integrity property of the XMHF frame-
work. We also plan to verify the XMHF implementation
using software model checking methods [11,13].

6.2 Future Work and Optimizations
We have already identified several optimizations that are

not implemented in XMHF currently but that will further
reduce the overhead imposed by XMHF or increase its ap-
plicability.
The first is support for physical memory beyond 4GB. We

are planning on leveraging XMHF’s existing 32-bit execution
environment and the x86 PAE paging mode in order to map
and use physical memory beyond 4GB. A longer term goal
is a full 64-bit transition.
XMHF and hypapps currently load during system bootup

and in turn load and boot a guest OS on top. The frame-
work then remains active during the entire guest OS lifetime.
However, XMHF should have support for launching itself
underneath an already running OS on-demand and should
have support for unloadig itself when it is not needed.
In the current XMHF framework, hypapps execute at the

highest privilege level like the XMHF core. While it is desir-
able to let the hypapp have unfettered access to the system,
we plan on investigating light-weight de-privileging mech-
anisms that would efficiently isolate the hypapp from the
XMHF core while allowing the hypapp full access to the
system and XMHF core functionality.
Finally, XMHF should have support for recursive virtual-

izability, so that the framework does not monopolize the use
of hardware virtualization features.

7. RELATEDWORK
BitVisor [31] is a tiny open-source hypervisor designed for

mediating I/O access from a single guest OS. It can allow
a particular device to be access controlled by the hypervi-
sor while allowing other devices to be handled by the guest
directly. BitVisor has a size of 20K SLoC and supports a
single guest VM running either Windows or Linux on the
Intel x86 platform. XMHF, in the same spirit advocates the
single“rich”guest model (§ 2.1). XMHF uses a dynamic root

of trust for initialization and allows more fine-grained inter-
ception of guest events. The framework extensibility allows
a wide range of hypapps to be built around it. XMHF sup-
ports multiprocessor configuration on both AMD and Intel
x86 platforms.

Xen [8], KVM [27], VMware [39], NOVA [33], Virtual-
box‡‡ and L4 are some popular general purpose (open-source)
hypervisors and microkernels which have been used for var-
ious hypervisor based research [9,15,26,30,32,34,45]. How-
ever, unlike XMHF, they do not present clear extensible
interfaces for developers of hypervisor-based applications.
Further, complexity arising from resource multiplexing and
and increased TCB make them prone to various security
vulnerabilities [1, 2, 42–44].

Qubes [28] is an open-source effort to build a secure desk-
top OS based on Xen. Qubes isolates various programs from
each other, and even sandboxes many system-level compo-
nents, like networking or storage subsystem using Xen vir-
tual machines. It essentially leverages Xen’s core function-
ality and can currently run Linux para-virtualized guests.

OsKit [18] is an early work on providing a framework for
modular OS development. The OSKit makes it vastly easier
to create a new OS on x86 platforms, port an existing OS to
the x86 or enhance an OS to support a wider range of ser-
vices. In some sense, XMHF attempts to provide the same
kind of modular and extensible infrastructure for creating
and porting new hypervisor-based applications on commod-
ity x86 platforms.

8. CONCLUSIONS
In this paper, we propose an eXtensible and Modular Hy-

pervisor Framework (XMHF) which strives to be a compre-
hensible and flexible platform for building hypervisor appli-
cations (hypapps). By providing in a modular way not only
most of the infrastructure “grunge” needed by an hypervisor
application, but also supporting libraries, XMHF’s goal is
to lower the barrier to develop new and exciting hypapps
with a low TCB while being compatible with unmodified
legacy operating systems and applications. Given XMHF’s
features and performance characteristics, we anticipate that
it can significantly enhance hypervisor research and devel-
opment.

9. AVAILABILITY
XMHF is open-source software and is available at the fol-

lowing URL:

http://xmhf.org
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